
MARCH/APRIL 2016

ENUMS 40 | JPA CRITERIA 45 | GOLO LANGUAGE 54

ORACLE.COM/JAVAMAGAZINE

INSIDE THE
JVM’S CODE
CACHE

24
HOW JAVA
COLLECTIONS
BECAME LAZY

28
PROCESSING
ANNOTATIONS

35
G1 AND
SHENANDOAH:
THE NEW GARBAGE
COLLECTORS

20
UNDERSTANDING
WHAT THE JIT IS
DOING

14

 Inside Java
and the JVM

http://www.oracle.com/javamagazine

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

01

//table of contents /

COVER ART BY I-HUA CHEN

03
From the Editor
Greater type inference and reduced
ceremony—a new JDK proposal from the
Java team

06
Letters to the Editor
Comments, questions, suggestions,
and kudos

09
Events
Upcoming Java conferences and events

11
Java Books
Review of Spring Boot in Action

40
New to Java

Making the Most of Enums
By Michael Kölling

Anytime you have a set of known
constant values, enums are a
type-safe representation that
prevents common problems.

45
Enterprise Java

What’s New in JPA:
The Criteria API
By Josh Juneau

Create queries and update databases
with Java entity classes and ields,
rather than with strings of SQL.

54
JVM Languages

Golo
By Julien Ponge

A fast, low-ceremony, easy-to-learn
language for the JVM

63
Fix This
By Simon Roberts

Our latest code challenges

19
User Groups
Bulgarian Java User Group

39
Oracle Cloud Services
for Java Developers
A quick overview of three Oracle cloud
services of interest to Java developers

67
Java Proposals of Interest
JEP 283 and JEP 263: Migrating
to GTK+ 3 on Linux

68
Contact Us
Have a comment? Suggestion?
Want to submit an article proposal?
Here’s how.

14
WHAT IS THE
JIT COMPILER
ACTUALLY DOING?
By Andrew Dinn and Andrew Haley

How the JIT transforms your code

20
THE NEW
GARBAGE
COLLECTORS
IN OPENJDK

By Christine H. Flood

An overview of the
G1 and Shenandoah
garbage collectors

24
UNDERSTANDING
THE JAVA
HOTSPOT VM
CODE CACHE

By Ben Evans

Learn to detect
and mitigate a full
code cache.

28
FOR FASTER JAVA
COLLECTIONS,
MAKE THEM
LAZY

By Mike Duigou

How adding lazy
operations to ArrayList
and HashMap improved
performance and
reduced memory usage

35
ANNOTATIONS:
AN INSIDE LOOK

By Cédric Beust

How annotations
work, how best to
use them, and how
to write your own

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

02

EDITORIAL

Editor in Chief
Andrew Binstock

Managing Editor
Claire Breen

Copy Editors
Karen Perkins, Jim Donahue

Section Development
Michelle Kovac

Technical Reviewer
Stephen Chin

DESIGN

Senior Creative Director
Francisco G Delgadillo

Design Director
Richard Merchán

Senior Designer
Arianna Pucherelli

Designer
Jaime Ferrand

Senior Production Manager
Sheila Brennan

Production Designer
Kathy Cygnarowicz

PUBLISHING

Publisher
Jennifer Hamilton +1.650.506.3794

Associate Publisher and Audience
Development Director
Karin Kinnear +1.650.506.1985

Audience Development Manager
Jennifer Kurtz

ADVERTISING SALES

Tom Cometa tom.cometa@oracle.com

Advertising Sales Assistant
Cindy Elhaj +1.626.396.9400 x 201

Mailing-List Rentals
Contact your sales representative.

RESOURCES

Oracle Products
+1.800.367.8674 (US/Canada)

Oracle Services
+1.888.283.0591 (US)

ARTICLE SUBMISSION

If you are interested in submitting an article, please email the editors.

SUBSCRIPTION INFORMATION

Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE

java@halldata.com Phone +1.847.763.9635

PRIVACY

Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer
that your mailing address or email address not be included in this program, contact
Customer Service.

Copyright © 2016, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise
reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY
DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY
DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. Opinions
expressed by authors, editors, and interviewees—even if they are Oracle employees—do not necessarily reflect the views of Oracle.
The information is intended to outline our general product direction. It is intended for information purposes only, and may not
be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied
upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s
products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly at no cost to qualified subscribers by
Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600.

ATMs, Smartcards, POS Terminals, Blu-ray Players,

Set Top Boxes, Multifunction Printers, PCs, Servers,

Routers, Switches, Parking Meters, Smart Meters,

Lottery Systems, Airplane Systems, IoT Gateways,

Programmable Logic Controllers, Optical Sensors,

Wireless M2M Modules, Access Control Systems,

Medical Devices, Building Controls, Automobiles…

#1 Development Platform

7 Billion
Devices Run Java

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:jennifer.hamilton%40oracle.com?subject=
mailto:karin.kinnear%40oracle.com?subject=
mailto:jennifer.s.kurtz%40oracle.com?subject=
mailto:tom.cometa%40oracle.com?subject=
mailto:cindy%40sprocketmedia.com?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle-sub.halldata.com/site/ORA000263JFnew/init.do?&PK=NAFORJ
mailto:java%40halldata.com?subject=
mailto:java%40halldata.com?subject=
https://www.oracle.com/java/index.html

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

03

//from the editor /

JVM languages can be divided into two broad

categories: those that aim to improve on Java’s

design (Groovy, Kotlin, Scala, Golo, Gosu, and so

on) and those that are ports of other languages

to the Java platform (JRuby, Jython, Fortress, and

others). In the former group, three enhancements

are almost universal: concision, closures, and

simple ways of specifying immutability. It would

be tempting (although not completely accurate) to

restate these three diferentiators as a quest for
brevity, but the more precise way to say it would

be that they are all part of a quest for simplicity.

In this regard, the last two releases of Java have

seen important changes that move the language

toward this goal of reduced clutter. In particu-

lar, the advent of lambdas and the introduction

of streams in Java 8 shrank the amount of code

PHOTOGRAPH BY BOB ADLER/GETTY IMAGES

Greater Type Inference and Brevity
May Be Coming to Java
A proposal for new reserved words will cut boilerplate code.

previously necessary to communicate straight-

forward operations.

However, those changes did not fully attack the

much-assailed wordiness of the language. This

loquaciousness is most visible and annoying in
type declarations:

HaydnSymphony surprise =
 new HaydnSymphony();

It’s clear in this example that the compiler knows

the type of the declared item, so it’s rather point-

less to type it twice. And in enterprise applica-

tions (where the naming problem is particularly

acute), variables can have lengthy names, which

make not only writing but reading code tiring and

error-prone. To address the question of brevity,

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://martinfowler.com/bliki/TwoHardThings.html
http://oracle.com/java

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

04

//from the editor /

the problem of redundant

type declarations needed to

be resolved.

A new JDK Enhancement

Proposal, JEP 286, proposes to do

just this for local variables. While

several approaches are consid-

ered, the one actually proposed

puts forth a new reserved word,

var, which stands in for the

redundant boilerplate. The previ-

ous code would now look some-

what shorter:

var surprise =
 new HaydnSymphony();

It’s important to note that var

is just a reserved word here,

not some declaration of a new

dynamic type. It simply states

that the type, which remains

static, can be inferred by the

compiler on the right-hand side

of the declaration.

By wisely relegating this fea-

ture to local variables, the JEP

authors made sure the actual data

type is never far from where the

variable is used, so downstream

maintenance programmers will

ind it easy to know exactly what
the data type is. This aspect is

important so that var does not

accidentally make it diicult to
understand or debug code.

Had the JEP proposed only this,

it would be a welcome step for-

ward. But it goes even further

and entertains the possibility of a

second keyword that would allow

similar declaration syntax for

immutable objects. If Java were to

use the scheme for variables and

values found in Scala, the second

keyword would be val (for value).

It would look like this:

val normalTemp = 98.6;

Because the compiler can tell

that the initial value is a loating-
point constant, it can easily infer

the correct data type.

The proposed type inference

of var extends the type infer-

ence previously delivered in Java

5, 7, and 8; whereas the use of

val is principally a replacement

for final. In fact, Java already

has a second keyword, const,

which is currently reserved but

unused, that could be employed

for the same purpose. In a world

of abstractions, the idea of a third

reserved term for the same con-

cept might seem preposterous,

but I like the pragmatism of a

short, elegant term as an immu-

table alternative to var. This

similarity makes the language

feel cohesive (compared with the

more inchoate feel of C++).

The use of var and its possible

pairing with val strongly appeal

to me, but the JEP document

explores other possible combi-

nations. One of the suggested

objections to val and var is

that the similarity in spelling

can lead to confusion, although

I am not persuaded that this is a

true problem. Of the complaints

that Scala developers have about

the language’s syntax, confu-

sion between these terms is not

among them.

Adding new reserved words to

an established language is serious

business. Especially with short

words, it’s likely that the addi-

tions will cause disruptions in

existing code. So additions should

be made only when they address

a compelling need. I believe that

the brevity and simplicity these

terms will bring to Java warrant

this step, and I would love to see

adoption of this proposal.

Let me know if you agree.

Andrew Binstock, Editor in Chief

javamag_us@oracle.com

@platypusguy

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://openjdk.java.net/jeps/286
mailto:javamag_us%40oracle.com?subject=
https://twitter.com/platypusguy
http://oracle.com/java

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

06

//letters to the editor /

How Groovy Found Its Groove

Thank you for mentioning

Groovy’s surge in popularity in

your editorial, “The Rise and Fall

of Languages in 2015” (January/

February 2016, page 3). You attrib-

uted the recent success to perfor-

mance. And indeed Groovy has

moved from a dynamic Java com-

panion to an eicient general-
purpose language, with static type

checking for reined type safety,
and static compilation for Java

speed and eiciency. So Groovy
can be applied to any kind of pro-

gramming activity.

This has led it to be more widely

adopted in new use cases. For

example, Groovy now has Android

support, so you can use it for

developing mobile apps.

Gradle, the popular build auto-

mation solution, uses Groovy as

its build language, which makes

Gradle more advanced and more

lexible than other build prod-

ucts. Google adopted Gradle for

building Android applications. So
lots of Android developers—

even those just using Java for

their projects—are now also

using Groovy, at least through

Gradle, and so are being exposed

and becoming familiar with

the language.

Finally, I should note that

Groovy is now part of the Apache

Software Foundation and no
longer directed by a commer-

cial company. As a result of this

change, other projects in the

Apache Foundation are already

using or integrating Groovy into

their oferings.
—Guillaume Laforge

Project lead of the Groovy

programming language

Elixir for Quirky Syntax

Thanks for your discussion of

the various languages in your

editorial, “The Rise and Fall

of Languages in 2015.” Even

though you don’t mention it, I’d

be curious to get your thoughts

on Elixir.

—Alan Andrade

Editor Andrew Binstock: Elixir is a

new language that runs on top of

Erlang on the Erlang virtual machine

(called BEAM). It has been champi-

oned by Dave Thomas, whose early

promotion of Ruby via his writings

made that language popular. Erlang,

a functional language with a quirky

syntax, is designed for writing dis-

tributed applications that are fault

tolerant. Elixir makes that Erlang

syntax more approachable, while

providing the same fault tolerance,

due to running on BEAM and rely-

ing on the Erlang ecosystem. While I

expect that Elixir will stay conined
to the traditional niche that Erlang

serves, I would not be surprised to

see it overtake Erlang in popularity.

Testing Spring

Thank you for your informa-

tive article on Spring Boot (“First
Steps with Spring Boot,” January/
February 2016, page 15). I had

diiculty getting the test code
on pages 20 and 21 to work.

Ultimately, though, I was able

to ind the solution, which was
to add the import statements in

Listing 1 to the test code.

—Dave Brooks

JANUARY/FEBRUARY 2016

import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.content;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;

Listing 1.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/JanFeb2016?token=B4G0MXJGXDW5T9N8

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

07

//letters to the editor /

Jython Correction

I believe there are two minor errors

in the Jython code examples in

“Jython 2.7: Integrating Python and

Java” (November/December 2015,

page 42). In Listing 9, the ifth line
should refer to range2 rather than

range1:

sum(get_nums(spreadsheet,
 range2)))

And in Listing 10, the range of spread-

sheet cells being tested should not

include H5:

assert_crosstab(main_sheet,
 "A5:G5", "H1:H4")

—Mihoko Suzuki

[Mihoko Suzuki heads up

translation of Java Magazine

into Japanese. —Ed.]

Contact Us

We welcome comments, suggestions,

grumbles, kudos, article proposals, and

chocolate chip cookies. All but the last

two might be edited for publication.
If your note is private, indicate this in
your message. Write to us at javamag_

us@oracle.com. For other ways to reach

us, including information on contacting
customer service for your subscription,
see the last page of this issue.

Learn More

Learn Java 8
From the Source

Oracle University

 New Java SE 8 training and certification

 Available online or in the classroom

 Taught by Oracle experts

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/technetwork/jp/articles/java/overview/index.html
mailto:javamag_us%40oracle.com?subject=
mailto:javamag_us%40oracle.com?subject=
http://education.oracle.com/pls/web_prod-plq-dad/ou_product_category.getFamilyPage?p_family_id=48&p_mode=Training&sc=WWOU15043959MPP001C002

https://www.jetbrains.com/idea/specials/idea/idea.html?utm_source=javamagazine&utm_medium=banner&utm_content=capable-and-ergonomic&utm_campaign=idea

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

09

//events /

PHOTOGRAPH BY TOMMIE HANSEN/FLICKR

Devoxx France APRIL 20–22

PARIS, FRANCE

Inaugurated by the Paris Java User Group

in 2012 and open to all developers, Devoxx

France will take place at the Palais des

Congrès this year, with an estimated 2,500

participants and 220 presentations. The

irst day will be devoted to hands-on labs
and three intensive tools-in-action pre-
sentations. The remaining days will fol-
low the familiar regional Devoxx format

featuring multiple miniconferences and

small-group workshops. Keynote topics
this year focus on computers in society.

Riga Dev Day

MARCH 2–4

RIGA, LATVIA

This event is a joint project by

Google Developer Group Riga,

Java User Group Latvia, and

Oracle User Group Latvia. By

and for software developers,

Riga Dev Day focuses on 25 of

the most relevant topics and

technologies for that audi-
ence. Tracks include JVM and

web development, databases,

DevOps, and case studies.

EclipseCon

MARCH 7–10

RESTON, VIRGINIA

EclipseCon is all about com-
munity. Contributors, adopters,

extenders, service providers,

consumers, and business and

research organizations gather

to share their expertise and

learn from each other. Topics

this year include an introduc-
tion to the Eclipse Che next-
generation Java IDE, hawkBit

and software updates for the

Internet of Things (IoT), faster

index for Java, and Java 9 sup-
port in Eclipse.

O’Reilly Fluent Conference

MARCH 7–10

SAN FRANCISCO, CALIFORNIA

Fluent ofers practical train-
ing in JavaScript, HTML5, CSS,

and the latest web develop-
ment technologies and frame-
works. Topics include WebGL,

CSS3, mobile APIs, Node.js,

AngularJS, ECMAScript 6,

and more. The conference is

designed to appeal to applica-
tion, web, mobile, and inter-
active developers, as well as

engineers, architects, and

UI/UX designers.

QCon London

MARCH 7–9, CONFERENCE

MARCH 10–11, WORKSHOPS

LONDON, ENGLAND

QCon is designed for technical

team leads, architects, engi-
neering directors, and project

managers who inluence inno-
vation in their teams. Topics

include what to expect in Java 9

and Spring 5, containers in

production, microservices for

mega-architectures, full-stack
JavaScript, and data science

and machine learning meth-
ods. Two days of workshops

follow the conference.

jDays

MARCH 8–9

GOTHENBURG, SWEDEN

jDays is a Java developer con-
ference covering Java/Java EE,

architecture, security, DevOps,

cloud and microservices, test-
ing, JavaScript, IoT trends,

methodologies, and tools.

JavaLand 2016

MARCH 8–10

BRÜHL, GERMANY

This annual conference is a

gathering of Java enthusiasts,

developers, architects, strate-

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.devoxx.fr
http://rigadevday.lv
https://www.eclipsecon.org/na2016/
http://conferences.oreilly.com/fluent/
http://qconlondon.com
http://www.jdays.se
https://www.javaland.eu/en/javaland-2016/

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

10

//events /

gists, and project administrators.

Session topics for 2016 include

containers and microservices, core

Java and JVM languages, enter-
prise Java and the cloud, front end

and mobile, IDEs and tools, and

the IoT. After lectures on the irst
day of the conference, attendees

get exclusive use of Phantasialand

and its rides and attractions.

JAX 2016

APRIL 19–21, CONFERENCE

APRIL 18 AND 22, WORKSHOPS

MAINZ, GERMANY

More than 200 internationally

renowned speakers give practical

and performance-oriented lec-
tures on topics such as Java, Scala,

Android, web technologies, agile

development models, and DevOps.

Workshops are ofered the day
preceding and the day following

the conference.

Great Indian Developer Summit
(GIDS)

APRIL 26–30

BANGALORE AND PUNE, INDIA

The conference begins in

Bangalore on April 26 through 29

and wraps up with an inten-
sive one-day session in Pune on
April 30. Tracks this year will

focus on .NET and cloud develop-
ment, web and mobile technolo-
gies, Java and dynamic languages,

and data and analytics.

GeeCON 2016

MAY 11–13

KRAKOW, POLAND

GeeCON is a conference focused

on Java and JVM-based tech-
nologies, with special attention

to dynamic languages such as

Groovy and Ruby. The event cov-
ers topics such as software devel-
opment methodologies, enterprise

architectures, software crafts-
manship, design patterns, distrib-
uted computing, and more.

JEEConf 2016

MAY 20–21

KIEV, UKRAINE

JEEConf is the largest Java con-
ference in Eastern Europe. The

annual conference focuses on

Java technologies for application

development. This year ofers ive
tracks and 45 speakers on modern

approaches in the development of

distributed, highly loaded, scal-
able enterprise systems with Java,

among other topics.

jPrime

MAY 26–27

SOFIA, BULGARIA

jPrime is a relatively new confer-
ence with talks on Java, various

languages on the JVM, mobile,

web, and best practices. This

second edition will be held in the

Soia Event Center, run by the
Bulgarian Java User Group, and

backed by the biggest companies

in the city.

IndicThreads

JUNE 3–4

PUNE, INDIA

IndicThreads enters its 10th year

featuring sessions on the latest in

software development techniques

and technologies from the IoT to

big data, Java, web, and more.

Devoxx UK

JUNE 8–10

LONDON, ENGLAND

Devoxx UK focuses on Java, web,
mobile, and JVM languages. The

conference includes more than

100 sessions, with 50-minute
conference sessions, three-
hour hands-on labs, and many
quickie presentations.

Have an upcoming conference

you’d like to add to our listing?

Send us a link and a description

of your event at least four months

in advance at javamag_us@oracle

.com. We’ll include as many as

space permits.

PHOTOGRAPH BY GÜNTER HENTSCHEL/FLICKR

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://jax.de/
http://www.developermarch.com/developersummit/
http://2016.geecon.org
http://jeeconf.com
http://jprime.io
http://pune16.indicthreads.com
http://www.devoxx.co.uk
mailto:javamag_us%40oracle.com?subject=
mailto:javamag_us%40oracle.com?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

11

Spring Boot is the popular

framework for Java enterprise

development. It is based on the

larger Spring Framework, and

it enables developers to put

together apps with less ceremony

and housekeeping than found in

most frameworks. The January/

February issue of Java Magazine,

which covered web develop-

ment, had a feature article that

explained the basics of setting

up and running a Spring Boot

application (“First Steps with

Spring Boot”).

This book, which at 180 pages

plus appendixes is unusually

short for a book in the Manning

“in Action” series, presents an

introduction similar to the arti-

cle and then keeps going with

more elaborate setups, more

advanced conigurations, and
practical deployment informa-

tion. The deployment coverage

includes a discussion of pushing

new apps to the cloud (specii-

cally, Pivotal’s Cloud Foundry

and, in passing, Heroku). The

explanation of the Spring eco-

system and how to use it in

developing apps is approachable

and intelligently presented.

As a starter manual, this book

is satisfactory, but it contains

several frustrating aspects of

which these two in particular

stand out. The irst is that the
downloadable source code is

in places signiicantly difer-

ent from what’s printed in the

book. What, then, is the reader

to do or conclude? The later

code (that online) is presum-

ably more correct, but the text

no longer corresponds directly

to it. A second frustration is

that the topic of microservices

is not mentioned, even though

this is clearly a major direc-

tion for Spring applications.

Finally, I have diiculty with the
author’s penchant for Grails, a

JVM application platform written

in Groovy. While Grails 3.0 apps

are based on Spring Boot, it’s

diicult to imagine that a Grails
user would be turning to this

book for information on Grails;

meanwhile, a Spring Boot user

is unlikely to want information

about programming for a dif-

ferent application framework.

Given the brevity of this book, it

seems that other topics, such as

microservices, would have been

much more helpful.

Where the content is rele-

vant and the code matches the

printed volume, Spring Boot in

Action is useful, well written,

and easy to follow. If it were

not for these limitations, it

could be recommended.

—Andrew Binstock

//java books /

SPRING BOOT IN ACTION

By Craig Walls
Manning Publications

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/JanFeb2016#&pageSet=15&page=0
http://www.javamagazine.mozaicreader.com/JanFeb2016#&pageSet=15&page=0
https://github.com/habuma/sbia-samples
https://www.manning.com/books/spring-boot-in-action

https://zeroturnaround.com/software/xrebel/trial/tshirt/?utm_source=javamag&utm_medium=fullpage_april&utm_campaign=xrebeltshirtpromo

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

13
ART BY I-HUA CHEN

 Inside Java
 and the JVM

T
here is little knowledge in programming

as important to the ideal design and imple-

mentation of software as the understanding

of how exactly code is executed. On the JVM,

this means knowing the machine’s internal opera-

tions and how the Java compiler transforms source

code into executable bytecodes. Quite apart from

their role in better programs, the mechanics of Java

and the JVM are uniquely fascinating. Looking only

at the JVM, can you name one other software tool that

contains not one but two compilers, three memory

reclamation tools, and a specialized performance

analyzer that is itself compiled at runtime?

That’s why we look into the fundamentals of

just-in-time (JIT) compilation in the JVM (page 14),

we compare the performance of diferent garbage
collectors (page 20), and we update an article on the

JVM’s code cache and its efects on performance
(page 24). To these, we add deep dives into how Java

itself works: how annotations are handled and how

you can write your own annotations (page 35), plus

examining how the Java Collections Framework

was optimized using an unusual technique that is

available to you in your code (page 28).

The rest of the issue (see the Table of Contents)

shows of a new JVM language, better persistence
in Java EE, and how enums work in Java, topped of
by our famous language quiz. Enjoy!

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

14

//inside java /

Most Java developers know that the JVM employs a just-

in-time (JIT) compiler to improve the performance of

Java programs. However, it’s less commonly understood what

a JIT compiler actually does and what beneits it provides. In
this article, we explain how a JIT compiler functions and why

that makes such a diference to performance. We discuss
OpenJDK, the open source JDK release, but everything we say

applies equally well to Oracle’s releases.

Interpretation versus Compilation

Java classes must be compiled to bytecode by the javac

compiler before they can be executed by the JVM. As

explained in a previous article in Java Magazine (“How the

JVM Locates, Loads, and Runs Libraries”), bytecode encodes

the details of classes in a portable, architecture-neutral ile
format. However, to execute that bytecode you need a JVM

(the java program) that is built for a speciic processor and
operating system.

OpenJDK’s java program provides more than one way

of executing Java methods. Initially they are executed by

an interpreter that implements the stack-based virtual

machine described by The Java Virtual Machine Speciication.

That interpreter provides a full implementation of Java.

However, because it uses interpretation, it cannot deliver the

best performance.

At a high level, an interpreter cannot perform many opti-

mizations, such as reordering a computation, in order to

remove or bypass redundant computations. At the low level,

an interpreter cannot make best use of the underlying pro-

cessor instruction set or the caches and the memory system.

In contrast, a JIT compiler can provide improvements at

both these levels. JIT compilers use high-level strategies to

transform bytecode into equivalent operations that have the

same efect but perform far less computation. These opera-

tions are then encoded as low-level, native machine code

using the processor instruction set to best efect while ensur-

ing that useful data is retained as far as possible in proces-

sor registers or caches, minimizing memory system delays.

Also, runtime constants such as cache and heap sizes and

the number of available processors can be taken into account

when generating code.

As an example of how slow interpretation can be, look

at the following program that computes elements of the

Fibonacci series:

x0 = 1
x1 = 1
xn = xn-1 + xn-2 for n > 1

The implementation is in a single Java class:

class Fib
{

What Is the JIT Compiler
Actually Doing?
How the JIT transforms your code

ANDREW DINN AND
ANDREW HALEY

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015?Sub_Id=BLNK00007&pg=31#pg31
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015?Sub_Id=BLNK00007&pg=31#pg31
https://docs.oracle.com/javase/specs/jvms/se8/html/

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

15

//inside java /

 public static
 void main(String[] args) {
 int i = Integer.valueOf(args[0]);
 System.out.println(fib(i));
 }

 private static int fib(int i) {
 if (i <= 0) {
 return 0;
 } else if (i == 1) {
 return 1;
 } else {
 return (fib(i - 1) +
 fib(i - 2));
 }
 }
}

You can run this using only the interpreter by passing lag
-Xint to the java command:

$ time java -Xint Fib 48
512559680

real 18m7.649s
user 18m8.074s
sys 0m0.088s

Note that the time command is Linux- and UNIX-speciic.
[Microsoft Windows users can use the ptime utility by Jem

Berkes. It is also available in our download area. —Ed.]

A JIT-Generated Bytecode Interpreter

Slow as that might seem, it is worth noting that the OpenJDK

interpreter is faster than most. One reason is that it is imple-

mented using machine code generated by the JIT compiler.

When the JVM starts up, the JIT compiler generates the inter-

preter as small snippets of native machine code, one for each

operation that can appear in bytecode. The interpreter works

on one bytecode operation at a time, jumping to the generated

code for that operation and then executing the next bytecode.

Each JVM thread has a JVM stack that stores frames, one

per method call. Each frame contains a stack known as the

operand stack. (See The Java Virtual Machine Speciication for

more details.) Many bytecode operations involve popping one

or more values of the operand stack; computing a result; and,
perhaps, pushing it back on the stack or, alternatively, writing

it as the value of a local variable. The processing step might

require adding two numbers, fetching a value from an input

object’s ield, or accessing an array element at some given
index. Such operations are easily translated into one or two

native machine instructions.

Flow-control operations, such as if or while, update the

bytecode pointer, possibly skipping forward to a then or else

branch or backward to a while loop condition test. Calls to

method operations, such as invokevirtual, create a new

frame, using the arguments on the operand stack to populate

a new locals area, while return operations delete a frame and

might push a method result onto the caller’s operand stack.

Generating the interpreter code at startup has important

beneits over writing it in a high-level language such as
C++. The instruction sequences are encoded using a low-

level assembler, which means they can make better use

of the capabilities of the runtime processor than an inter-

preter written in a high-level language. For example, dedi-

cated machine registers can be used to provide fast refer-

ence to commonly used values such as the current Java

thread and frame or the bytecode pointer. You can even

generate interpreters with diferent features depending on
command-line options.

There are some opportunities for a JITed interpreter to apply

optimizations. For example, some pairs of bytecode instruc-

tions that are frequently seen together can be merged. One

such case occurs when a ield of this is loaded. The merger

requires executing two bytecode instructions, aload_0

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.pc-tools.net/win32/ptime/
http://www.pc-tools.net/win32/ptime/
https://bitbucket.org/javamagazine/magdownloads/downloads/Utilities-WindowTimer-ptimer.zip

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

16

//inside java /

followed by getfield. aload_0 reads the object refer-

ence for this from the locals area into a register, which is

always in local slot zero, and then pushes the value onto the

top of the stack. getfield pops an object reference of the
top of the stack back into the same register, loads a value at

some ofset from the start address of the object into a sec-

ond register, and then pushes the loaded value onto the top

of the stack. The push and pop in the middle are simply

wasted work. In addition, executing each successive instruc-

tion requires reading two instruction bytes twice and two

jumps to the associated code template for that instruction.

The JVM substitutes a pseudo-instruction fast_agetfield

for the original pair, avoiding the redundant push and pop

operations and requiring only one bytecode read and jump.

Also, some commonly used library calls—for example,

java.lang.ref.Reference.get()—have specially coded

implementations that enable the interpreter to execute

them quickly.

JIT Compilation

To do even better than this optimized interpreter can do, you

need a JIT compiler. Even in a JIT compiler, however, not all

methods are compiled to optimized machine code. The JVM

concentrates on the ones that provide the most beneit.
A JIT compiler must do a lot of work to analyze the byte-

code and generate optimized machine code, even for a simple

method. Extensive testing of Java code from many sources

shows that most methods are only called a very small

number of times—and some not at all! So, there is no point

bothering to compile all of them. The amount of time saved

would be negligible, and the JIT compiler would be better of
focusing its time on code that is called frequently. A good JIT

compiler tries to speed up execution only for hot methods:

that is why the OpenJDK JVM was named HotSpot. It is often

said that 90 percent of the execution time is spent executing

10 percent of the code, so it’s ideal to concentrate the optimi-

zation eforts on that 10 percent.
You can see the HotSpot VM in action as follows:

$ time java -XX:+PrintCompilation Fib 48
 66 1 3 java.lang.String::indexOf (70 bytes)
 67 3 3 java.lang.String::hashCode (55 bytes)
 . . .
 73 10 3 java.lang.String::equals (81 bytes)
 73 11 3 Fib::fib (29 bytes)
 74 12 4 Fib::fib (29 bytes)
 75 11 3 Fib::fib (29 bytes) made not entrant
512559680

real 0m26.866s
user 0m26.861s
sys 0m0.021s

Notice that this compiled code runs more than 50 times faster

than interpreting. (The third column in this log shows the

optimization level, which we describe shortly.)

Note that the method String.indexOf is the irst method
to be compiled, even though there is no call to that method in

the program. This is because starting up Java executes code

to set up the runtime environment, and much of it is string

processing. Therefore, the irst hot methods are encountered
in class String.

You can see that fib is compiled and then recompiled at

a higher optimization level. The original compiled code is

decommissioned once the new version is in place. So, there

seems to be more than one way to compile a method: in fact,

there is more than one JIT compiler in OpenJDK.

A Choice of JIT Compilers

The performance improvement provided by compilation

comes from executing machine code instead of interpreting

bytecode. However, by itself that doesn’t necessarily make

a big diference. The most signiicant gains arise from the

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

17

//inside java /

high- and low-level optimizations that the compiler per-

forms when generating machine code.

OpenJDK includes two JIT compilers, often known as the

client and server compilers. Originally you had to pick one

or the other on the java command line (using either the

-client or -server options). In recent JDK releases, the

default coniguration is to use them both in what is called
tiered compilation mode. You can see tiered compilation in

action in the previous trace. Method fib is irst compiled at
Level 3, that is, using the client compiler but including code to

count method calls and paths taken at branches. fib is then

recompiled at Level 4, which uses the server compiler.

The client JIT compiler was designed for desktop applica-

tions that typically run only for a short time, possibly only

for a few seconds or, perhaps, a few minutes. In contrast, the

server JIT compiler was intended for applications that run for

hours, days, or even months. Both compilers optimize, but

they make very diferent trade-ofs. Essentially, the client JIT
compiler performs less optimization than the server JIT, pro-

ducing slower compiled code but generating it more quickly.

The trade-of is easy to see. For example, in the OpenJDK
source code from the OpenJDK repository, the Java library

source is in the subdirectory jdk/src/share/classes. We
ran javadoc with only the client compiler, as shown below,

where the input ile jdkfiles lists all Java source iles found
below src/share/classes:

$ time javadoc \
-quiet -J-XX:TieredStopAtLevel=2 @jdkfiles
real 4m41.775s
user 5m31.390s
sys 0m1.862s

Command-line option -J is used to pass an argument to the

underlying JVM. The option -XX:TieredStopAtLevel=2

asks the JVM to execute only at Level 1 (interpreted) or Level 2

(client compiler without proiling).
To run the JVM using only the server compiler, you would

pass the option -XX:-TieredCompilation, which switches

of tiered compilation. It generates these timings:

$ time javadoc \
-quiet -J-XX-TieredCompilation @jdkfiles
real 3m30.083s
user 4m50.410s
sys 0m1.880s

Going to the server compiler has dropped the elapsed time

from 4 minutes and 40 seconds to 3 minutes and 30 sec-

onds, or a reduction of 25 percent. It is interesting to look at

the change in user time, which is the amount of CPU time

used across all of the cores. In the irst run, 50 seconds more
CPU time was used than real (elapsed) time. In the second

run, there was 1 minute and 20 seconds of extra CPU time, a

60 percent increase. So, 60 percent more JIT compiler time cut

25 percent of the total execution time.
JIT compilation is done in background threads, normally

on an otherwise idle CPU. So, compilation doesn’t slow down

an application by stealing the CPU. The usefulness of a JIT

compiler depends on two things: the speed of the code it

generates and how fast it delivers that code. Delivery time

is important because execution switches to compiled code

only after
■■ The method is called enough times to be queued for

compilation
■■ The compiler dequeues the method and generates the

compiled code

The server compiler produces faster code, but that faster code

has some catching up to do. Because each server-compiled

method arrives later than the corresponding client-compiled

method, methods that are hot when scheduled for compila-

tion might have gone cold by the time the compiled code is

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

18

//inside java /

generated. The program might even exit before the server

compiler has inished.
Therefore, for a server application, if you have to choose

between the JITs, the server compiler is almost certainly a

better choice than the client compiler. It is well worth sac-

riicing a bit of lost time getting up to speed during server
startup if it ensures that code that runs for weeks is as highly

optimized as possible.

However, OpenJDK provides an even better option that,

for most applications, provides the best of both worlds: the

default tiered compilation coniguration we mentioned ear-

lier. Tiered means that hot methods are irst compiled using
the client JIT compiler. These client-compiled methods count

how often they are executed, and if they remain hot, they are

recompiled using the server JIT compiler. Tiered compila-

tion gives good startup speed while ensuring that code that

remains hot is fully optimized. It also avoids wasting time

heavily optimizing code that is called a lot at program startup

but then quickly goes cold.

When run with tiered compilation, the javadoc example

doesn’t show much diference compared with the server
compiler numbers:

$ time javadoc \
-quiet -J-XX+TieredCompilation @jdkfiles
real 3m31.275s
user 5m23.726s
sys 0m2.093s

You can see that there is a lot more user time (1 minute 50

seconds) spent on compilation but the elapsed time does not

really improve much. That’s because almost all the code

in the javadoc application that gets client-compiled is

executed frequently enough that it eventually gets server-

compiled. So, the beneit of delivering JITed code earlier is
lost in the overhead of running that slower code for longer.

For most real-life server applications, tiered compilation

rarely costs much and is frequently a much better bet than

plain server compilation, because the applications start up

considerably faster. Tiered compilation also helps interactive

applications, again because they start up quickly and then

get faster as the server compiler does its work. You might

have noticed this efect when running applications such
as NetBeans.

Some Optimizations Are Possible Only with a JIT

You might ask, what is the point of using a JIT compiler when

it adds the overhead of compiling methods at runtime? Why
not just compile all the code in advance to get the best per-

formance, as is done with native languages such as C++? (This

is called ahead-of-time compilation, or AOT.) That would be

possible if all the code were available at compile time but, of

course, Java is a dynamic language that is able to load code

from the classpath or even via the network. If there were no

JIT compiler, dynamically loaded code would need to be inter-

preted, which would be highly unsatisfactory.

However, that is not the only reason for using a JIT com-

piler. The most important beneit of runtime compilation
is that certain optimizations become possible that are not

available to AOT compilers. It is not widely understood or

acknowledged, but the OpenJDK JIT compiler can generate

code for a whole range of programs faster than, say, a C++

compiler can do for an equivalent program.

Conclusion

If you are interested in seeing what the JVM does with

your application code, try running with the following

lags enabled:

java -XX:+PrintCompilation \
 -XX:+UnlockDiagnosticVMOptions \
 -XX:+PrintInlining MyMainClass arg1 … argN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

19

//inside java /

“Introduction to JIT Compilation in Java HotSpot VM”

learn more

These options enable you to observe inlining decisions being

made as your methods are compiled. Over a long enough

time and with a varying data set, you might see your meth-

ods being deoptimized and recompiled as application-phase

changes drive your code down previously cold paths. You

might see increasingly larger inline trees being submitted for

compilation as call counts accumulate from the bottom up.

If you are really adventurous, you can download the

OpenJDK source code and build the disassembler library

(look for the hsdis subdirectory in the hotspot source tree),

allowing you to print the generated native machine code with

the -XX:+PrintAssembly option. You might even build a

debug version of OpenJDK, which provides a host of other

Print and Trace options to expose a lot more information

about what the JIT compiler is doing on your behalf.

It has often been observed that the most successful tech-

nology is invisible: it works so well that you don’t know it’s

there. Almost all of the time, the Java HotSpot VM is like that.

The interpreter, the JIT compilers, the garbage collectors,

and the runtime system all work together so smoothly and

quickly that you don’t notice that they’re there. But some-

times, knowing what is really going on can give you clear

beneits. </article>

Andrew Dinn is a member of Red Hat’s OpenJDK team and also
leads the JBoss project Byteman.

Andrew Haley is technical lead of Red Hat’s Java team. He has
been programming professionally for more than 30 years and
using Java for almost as long as it has existed.

//user groups /

BULGARIAN JAVA
USER GROUP

Bulgaria is a popular spot

for startups and outsourc-

ing. The Bulgarian Java

User Group (JUG) was

founded in September 2007

along with a mailing list for

discussion of Java-related

issues. Five members set

up a leadership board in

2013 and began regular

meetups and sessions once

or twice a month. The JUG took part in Adopt OpenJDK activi-

ties and soon joined the Java Community Process program. As

a member, the JUG pushed for some changes to OpenJDK and

held a few hackathons.

In 2015, the group started organizing a community con-

ference called jPrime, which attracted 400 attendees and 20

sponsoring companies. The conference is considered one of

the major Java events in the region.

The group also started up jProfessionals, a series of free,

one-day miniconferences. The irst jProfessionals meeting
was held in November 2015, and the featured speaker was

Kohsuke Kawaguchi, the creator of Jenkins CI.

The Bulgarian JUG organizes regular events with local and

foreign presenters, including Java Champion David Blevins,

who spoke about the TomEE application server. Monthly

events include hands-on labs.

During the summer, when there are no meetups, members

have started weekend code retreats. The topic in 2015 was

developing the JBoss Forge add-on for Spring Boot.

The plan for 2016 is to put on even more events.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://bitbucket.org/javamagazine/magdownloads/downloads/2012-05-IntroToJIT-Evans&Lawrey-articleOnly.pdf
https://jug.bg/en/
https://jug.bg/en/
https://groups.google.com/forum/#!forum/bg-jug
http://jprime.io/

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

20

//inside java /

L ife in the world of OpenJDK garbage collection (GC) is get-

ting exciting. Not only is there a new default JDK 9 gar-

bage collector, called G1, but there is also a new alternative,

Shenandoah, from Red Hat. In this article, I discuss the dif-

ferences between the current parallel collector and G1, and I

examine what Shenandoah brings to the table.

What Is GC?

GC is an automated way to reclaim for reuse memory that

is no longer in use. Unlike other languages in which objects

are allocated and destroyed manually, with GC, program-

mers don’t need to pick up and examine each object to decide

whether it is needed. Instead, the omniscient GC housekeeper

process works behind the scenes quietly discarding objects

that are no longer useful and tidying up what’s left. This

decluttering leads to an eicient program.
The JVM organizes program data into objects. Objects con-

tain ields (data) in a managed address space called a heap.

Imagine the Java class below, which represents a simple

binary tree node.

class TreeNode {
 public TreeNode left, right;
 public int data;
 TreeNode(TreeNode l, TreeNode r, int d) {
 left = l; right = r; data = d;

 }
 public void setLeft(TreeNode l) { left = l;}
 public void setRight(TreeNode r) {right = r;}
}

Now imagine the following operations performed on this class.

TreeNode left = new TreeNode(null, null, 13);
TreeNode right = new TreeNode(null, null, 19);
TreeNode root = new TreeNode(left, right, 17);

Here, I’ve created a binary tree with a root of 17, a left sub-

node of 13, and a right subnode of 19 (see Figure 1).

Suppose I then replace the right subnode, leaving subnode

19 as unconnected garbage:

root.setRight(new TreeNode(null, null, 21));

This results in the situation shown in Figure 2.

CHRISTINE H. FLOOD

The New Garbage Collectors
in OpenJDK
The upcoming G1 and Shenandoah garbage collectors

Figure 2. The same tree with
one subnode replaced

13

17

21 19

Figure 1. A three-node tree

13

17

19

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

21

//inside java /

As you can imagine, in the process of constructing and

manipulating data structures, the heap will start to look like

Figure 3.

Compacting the data means changing its address in mem-

ory. The Java program expects to ind an object at a particular
address. If the garbage collector moves the object, the Java

program needs to know the new location. The easiest way to

do this is to stop all the Java threads, compact all the objects,

update all the references to the old addresses to now point to

the new addresses, and resume the Java program. However,

this approach can lead to long periods (called GC pause times)

when the Java threads aren’t running.

Java programmers aren’t happy when their applica-

tions aren’t running. There are two popular strategies for

decreasing GC pause times. The GC literature refers to

them as concurrent algorithms (doing work while the pro-

gram is running) and parallel algorithms (employing more

threads to get the work done faster while the Java threads

are stopped). The current OpenJDK default garbage collec-

tor (which can be manually speciied on the command line
with -XX:+UseParallelGC)

adopts the parallel strategy. It

uses many GC threads to get

impressive throughput.

Parallel Garbage Collector

The parallel garbage collec-

tor segregates objects into

two regions—young and old—

according to how many GC

cycles they have survived.

Young objects are initially

allocated in the young region,

and the compaction step keeps

them in that region until they

have survived a certain number of young collections. If they

live long enough, they are promoted to the old generation.

The theory is that rather than pausing to collect the entire

heap, which would take too long, you can collect just the

part of the heap that is likely to contain short-lived objects.

Eventually it will become necessary to collect the older

objects as well.

In order to collect just the younger objects, the garbage

collector needs to know which objects in the old generation

reference objects in the young generation. The old objects

need to be updated to reference the new locations for the

new objects. The JVM does this by maintaining a summari-

zation data structure called the card table. Whenever a refer-

ence is written into an old-generation object, the card table

is marked so that during the next young GC cycle, the JVM

can scan this card looking for old-to-young references. With

these references known, the parallel garbage collector is

able to identify which objects to cull and which references

to update. It uses multiple GC threads to get the work done

faster while it has paused the program.

Figure 3. A heap with many unused data items in it

13

17

21

103

121

197

14

213

91

201 512

51

29
15

Shenandoah
compacts the
data concurrently.
As a consequence,
Shenandoah doesn’t need
to limit the number of
regions it collects in order
to minimize application
pause times.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

22

//inside java /

Garbage-First Garbage Collector

The new JDK garbage collector—named G1—uses both par-

allel and concurrent threads. It uses concurrent threads to

scan the live objects while the Java program is running. It

uses parallel threads to copy objects quickly and keep pause

times low.

G1 divides the heap into many regions. A region might be

either an old region or a young region at any time during the

program run. The young regions must be collected at every

GC pause, but G1 has the lexibility to collect as many or as
few old regions as it predicts it can collect within the user-

speciied pause-time goal. This lexibility allows G1 to focus
the old-object GC work on the areas of the heap that have

the most garbage. It also enables G1 to tune collection pause

times based on user-speciied pause times.
As shown in Figure 4, G1 will freely compact objects into

new regions.

G1 knows how much data is live in each region and the

approximate time it takes to copy that live data. If the user is

interested in minimal pause times, G1 can choose to evacu-

ate only a few regions. If the user is not worried about pause

times or has stated a fairly large

pause-time goal, G1 might choose

to include more regions.

G1 must maintain a card table

data structure so that it can collect

only young regions. It also must

maintain a record for each old

region that other old regions have

references to. This data structure

is called an into remembered set.

The downside of specify-

ing small pause times is that

G1 might not be able to keep up

with the program allocation rate,

in which case it will eventually

give up and fall back to a full stop-the-world GC mode. This

means that both the scanning and the copying work are done

while the Java threads are stopped. Note that if the GC can’t

meet the pause-time goal with partial collections, then a full

GC is guaranteed to exceed the allocated time.

In sum, G1 is a good overall collector that balances through-

put and pause-time constraints.

Shenandoah Garbage Collector

The Shenandoah garbage collector is an OpenJDK project

that is not yet part of the OpenJDK distribution. It uses the

same region-based heap layout as G1 and employs the same

concurrent scanning threads to calculate the amount of

live data in each region. It difers in the way it handles the
compaction stage.

Figure 4. Before and after a G1 run. Regions 1 and 2 are compacted
into region 4. New objects may be allocated to fill region 4. Region 3
is untouched because there would be too much copying work
(70 percent) for too little space reclamation (30 percent).

Region 1 is
60% garbage

Before GC After GC

G1 Heap Layout

Region 2 is
70% garbage

Region 3 is
30% garbage

Region 4
is empty

Region 1
is empty

Region 2
is empty

Region 3 is
30% garbage

Region 4 is
70% full

Region 5
is empty

Region 5
is empty

The key diiculty
with Shenandoah’s
concurrent copying
is that the GC threads
doing the copying work
and the Java threads
accessing the heap
need to agree on an
object’s address.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

23

//inside java /

Shenandoah compacts the data concurrently. (The sharp-

eyed among you will have noticed that this means it might

need to move objects around while the application is trying

to read them or write to them; don’t worry—I’ll come to that

in a second.) As a consequence, Shenandoah doesn’t need to

limit the number of regions it collects in order to minimize

application pause times. Instead it picks all the most fruitful

regions—that is, regions that have very few live objects or,

conversely, a lot of dead space. The only steps that introduce

pauses are those associated with certain bookkeeping tasks

performed at the beginning and end of scanning.

The key diiculty with Shenandoah’s concurrent copy-

ing is that the GC threads doing the copying work and the

Java threads accessing the heap need to agree on an object’s

address. This address might be stored in several places, and

the update to the address must appear to happen simulta-

neously. Like most thorny problems in computer science, the

solution is to add a level of indirection.

Objects are allocated with extra space for an indirec-

tion pointer. When the Java threads access the object, they

irst read the indirection pointer to see whether the object
has moved. When the garbage collector moves an object, it

updates the indirection pointer to point to the new location.

New objects are allocated with an indirection pointer that

points to themselves. Only when an object is copied during

GC will the indirection pointer point to somewhere else.

This indirection pointer is not free. It has a cost in both

space and time to read the pointer and ind the current loca-

tion of the object. These costs are less than you might think.

Spacewise, Shenandoah does not need the of-heap data
structures used to support partial collections like the card

table and the into remembered sets. Timewise, there are

various strategies to eliminate read barriers. The optimiz-

ing JIT compiler can realize that the program is accessing an

immutable ield, such as an array size. It’s correct in those
cases to read either the old or the new copy of the object so

no indirection read is required. In addition, if the Java pro-

gram reads multiple ields from the same object the JIT
may recognize this and remove the subsequent reads of the

forwarding pointer.

If the Java program writes to an object that Shenandoah

is copying, a race condition occurs. This is solved by having

the Java threads cooperate with the GC threads. If the Java

threads are about to write to an object that has been targeted

for copying, the Java thread will irst copy the object to its
own allocation area, check to see that it was the irst to copy
the object, and then perform the write. If the GC thread

copied the object irst, then the Java thread can unwind its
allocation and use the GC copy.

Shenandoah eliminates the need to pause during the copy-

ing of live objects, thus providing much shorter pause times.

Conclusion

If you are interested in the best end-to-end throughput, you

will probably want to use the parallel garbage collector that

currently ships in the JDK. If you want a good compromise

between pause times and throughput, the new G1 garbage

collector will work well for you. Shenandoah will be an attrac-

tive option for response-time-critical applications running

with large (more than 20 GB) heaps such as inancial trading,
ecommerce, and other interactive applications in which the

user would be irritated by noticeable GC delays. </article>

Christine H. Flood is a principal software engineer for the Java
platform at Red Hat, where she works on Shenandoah.

A 2014 presentation about Shenandoah by the author

Oracle tutorial on garbage collection in the JVM

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://rkennke.files.wordpress.com/2014/02/shenandoahtake4.pdf
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

24

//inside java /

Java HotSpot VM has an advanced just-in-time (JIT) com-

piler that enables Java HotSpot VM to produce very highly

optimized machine code for any platform that Java HotSpot

VM runs on.

In this article, I examine an important aspect of Java

HotSpot VM’s JIT compiler: the code cache. Understanding

the code cache provides insight into a range of performance

issues that are otherwise diicult to track down.
Note: An article in this issue, “What Is the JIT Compiler

Actually Doing?,” and a previous article in Java Magazine,

“Introduction to JIT Compilation in Java HotSpot VM,” [PDF]

discuss introductory Java HotSpot VM and JIT compiler topics.

To start our journey toward the JIT compiler and code cache,

let’s begin by considering the lifecycle of a Java method.

Lifecycle of a Java Method

The smallest unit of new code that the Java platform will

load and link into a running program is a class. This means
that when a new method is being onboarded, it must go

through the class-loading process (as part of the class that

contains it).

The class-loading process acts as a pinch point: a place

where a lot of the Java platform’s security checks are concen-

trated. The lifecycle of a Java method, therefore, starts with

the class-loading process that brings a new class into the

running JVM.

Class Loading

Class loading starts with a stream of bytes (often read from

disk) that should be in the class ile format. If the byte stream
its into the expected format, the class loader can attempt to
link it.

The linking process has several phases, of which the
irst—and most important—is veriication. This is the phase
in which the JVM conirms that the new class ile does not
attempt to violate Java’s robust programming model.

During the veriication phase, several security constraints
are checked. For example, it is veriied that

■■ Methods respect access control keywords
■■ Methods are called with correct static types
■■ Variables are assigned only suitably typed values
■■ Variables are properly initialized before use

The bytecode of methods is also extensively checked. A key
point here is that the JVM is a stack machine.

This choice was a deliberate one—it is much easier to prove
security (and other) properties on a stack machine than
with a register-based machine. This means that most of the

checks to be made on bytecode can be done economically via
static analysis at class-loading time, which greatly reduces

the chance of harmful code ever making it into a live JVM.
For example, the stack state can be deduced at every point

in a method without needing to keep track of the contents
of registers.

BEN EVANS

Understanding the Java
HotSpot VM Code Cache
Learn to detect and mitigate a full code cache.

PHOTOGRAPH BY JOHN BLYTHE

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://bitbucket.org/javamagazine/magdownloads/downloads/2012-05-IntroToJIT-Evans&Lawrey-articleOnly.pdf

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

25

//inside java /

Note that for performance reasons, JDK classes (from rt.jar)

are not checked. They are loaded by the primordial class
loader, which doesn’t do comprehensive security checks.

This use of class loading as the opportunity to verify byte-

code slows down the class-loading process. However, the

payof is that it signiicantly speeds up runtime, because
checks can be done once and then omitted when the code is
actually run.

How Java HotSpot VM Implements Class Loading

The key method that is used to turn a stream of bytes into a
class object is the Java method ClassLoader::define

Class(). This method delegates to a native method,

ClassLoader::defineClass1(), which does some basic

checks and string conversion and then calls a C function
called JVM_DefineClassWithSource().

As we might expect, this is an entry point into the JVM, and

it provides access into the C++ code of Java HotSpot VM. Java

HotSpot VM uses the SystemDictionary to load a new class

via the parseClassFile() method of ClassFileParser.

Once class loading has been completed, the bytecode of

the method is placed inside a C++ object (methodOop) for the

bytecode interpreter to use.

This is sometimes called the method cache, although the

bytecode is actually held inline in the methodOop for perfor-

mance reasons.

How Do Methods Get Compiled?

Java HotSpot VM maintains a large number of performance

and tracing counters in the bytecode interpreter. These coun-

ters trigger the compilation of methods once the methods

have been run 10,000 times (for the server compiler).

The code that is output from the compiler is machine

code (specialized for the speciic operating system and CPU
in use). It is placed into a central place—the CodeCache

(a C++ object)—which is a heap-like structure for holding

CodeBlob instances (which are the compiled representations

of method code).

With the code blobs in the code cache, the running system

is then updated to use the new compiled code rather than

interpreted mode (this update process, which involves updat-

ing pointers, is sometimes called pointer swizzling).

PrintCompilation

One of the simplest lags that can be used to control the JIT
compilation subsystem is -XX:+PrintCompilation. This

switch tells the JIT threads to add compilation messages to

the standard log. PrintCompilation is explained further in

the second article I linked to earlier.

Deoptimization

Java HotSpot VM’s server mode uses optimizations that it

can’t always prove hold true. It protects these optimizations

with sanity checks (often called guard conditions), and if a

check fails, Java HotSpot VM will deoptimize the code that
was based on that assumption.

It’s common for Java HotSpot VM to then reconsider and

try an alternative optimization. This means that the same

method might be deoptimized and recompiled several times.

We can see deoptimization events in the PrintCompilation

log; they show up as lines such as “made not entrant” and

“made zombie.”

These lines mean that a particular method, which had been

compiled to a code blob, has now been deoptimized. This usu-

ally (but not always) happens because a new class was loaded

and invalidated an assumption made by Java HotSpot VM.

What Happens as the Program Warms Up?

After a Java program starts up and goes through its initializa-

tion phases, it will normally get into normal operation and

the hot paths of code will start to develop.

If you do multiple runs with the PrintCompilation switch

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

26

//inside java /

on and collect the logs of which methods were compiled, a

pattern emerges:
■■ Compilation usually eventually stops.
■■ The number of compiled methods stabilizes.
■■ The set of compiled methods on the same platform for the

same test inputs is usually fairly consistent.
■■ The exact details of which methods get compiled depend on

the exact JVM, operating system platform, and CPU in use.

Note: The compiled code for a given method is not guaranteed

to be roughly the same size across platforms.

Similar size is the usual pattern, but there are cases in

which the picture can be diferent from this; you should
always check. One good way to do this is with Java VisualVM,
which shows the general shape of the class-loading curve in

its Classes section (the lower left panel of Figure 1).

What Happens if the Code Cache Fills?

In short, compilation has to stop. This is because once a code

blob is compiled, usually only deoptimization can remove it

from the code cache.

Code cache space is reclaimed by lushing the “zombie”
code blobs from the code cache. (Over time, any “not entrant”

blobs turn into zombies.)

In JDK versions after Java 7 Update 4,

there is an additional form of code

cache lushing: speculative lushing. In

this approach, the older methods are

marked as being potentially eligible
for lushing and they are disconnected
from the methodOop that created

them. If the VM needs to call the com-

piled method, the method is relinked
back to its methodOop and survives

being lushed.
However, if the method is not called

again within a certain time frame, the

methodOop is reverted to interpreted

mode, and the code blob is eligible for

being lushed.

What Happens During Startup?

To see why application startup time

could be problematic for the code cache,

let’s consider an imaginary Spring

application.

Spring applications start up using the

Bootstrap class, which locates an XML Figure 1. Java VisualVM showing class-loading data

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

27

//inside java /

ile detailing the instances to be created and wired up (and
deines the classes to be loaded).

This means that Spring applications go through two phases

of class loading: irst, the phase of loading the classes needed
to start the bootstrapping, and then a second phase that

occurs when the application classes are typically loaded.

From the point of view of JIT compilation, this is impor-

tant because the Spring framework uses relection and other
techniques to discover which classes to load and instantiate.

These framework methods are called heavily during applica-

tion startup but then are never touched again after that.

If a Spring framework method is run enough to be com-

piled, it is going to be of minimal use to the application. It

will marginally improve application startup time, but at the

price of using up a scarce resource. If enough framework
methods are compiled, they can use up the entire code cache,

leaving no room for the application methods that we actually

want to be compiled.

To solve this problem, the JVM uses a system in which the

values of counters decay over time. In their simplest form,

the decay reduces the invocation counts for methods by

50 percent every 30 seconds.

This means that if methods are used only at startup, their

invocation counts will, within a few minutes, have decayed

down to efectively zero. This prevents the rarely used Spring
framework methods from using valuable code cache space.

Which Switches Control Compilation and

the Code Cache?

The following switches control compilation and the

code cache:
■■ -XX:+PrintCompilation shows log entries for compila-

tion and deoptimization events.
■■ -XX:CompileThreshold=n changes the number of times a

method must be called before being compiled.
■■ -XX:ReservedCodeCacheSize=YYm sets the overall size of

the code cache to be used.
■■ -XX:+UseCodeCacheFlushing allows a JVM to lush little-

used code blobs (this is on by default in Java 7 Update 4

and later).

How Do We Fix Applications Sufering from a

Full Code Cache?

To identify a full code cache and resolve it, irst make sure the
cache is a limitation. That is always true in the event a “com-

pilation halted” warning is issued. You can check whether the
size is too small (and remediate the problem) using these steps.

1. Use -XX:+PrintCompilation to output the methods

that are actually being compiled.

2. Wait until this reaches steady state.

3. Repeat a few runs. Check that the results set is stable.
4. Try increasing the size of code cache (doubling is often a

good irst step) using -XX:ReservedCodeCacheSize. If

more methods are now seen to be compiled, you can be

sure that the original code cache was too small.

5. Retest overall performance to ensure that increasing

the code cache size hasn’t harmed some other aspect of

application performance.

Optimizations such as this have an important empirical aspect:

once you make a change, you must measure its results carefully.
As this article demonstrates, the irst step is understanding
what the JVM is doing so that you know what changes to try.

Ben Evans helps to run the London Java Community and repre-
sents the user community on the JCP Executive Committee.

Oracle’s JVM Specification for Java SE 8

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://docs.oracle.com/javase/specs/jvms/se8/html/index.html

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

28

//inside java /

The Java core libraries community has been working hard

to improve the Java Collections Framework by making it

lazier. Laziness in software is an architectural or systematic

approach that defers producing a result until it can be deini-
tively determined that the result is needed. Many opera-

tions can be decomposed into a collection of suboperations.

Laziness delays performing suboperations until the results

of those operations are needed to complete some other sub-

operation or the overall operation.

A nonlazy approach to completing any operation is to per-

form the entire sequence of suboperations and then combine

their results to produce the inal result. The more eicient
lazy approach is to begin by combining the results of sub-

operations. Whenever you discover a needed missing result

from an unsolved suboperation, you perform that subopera-

tion to determine the subresult. Initially you start with no

computed subresults and accumulate results by complet-

ing suboperations, enabling additional suboperations to be

completed and culminating in a inal result for the whole
operation. Laziness successfully saves time if, when you have

the result of an operation, there were suboperations whose

results were never determined because those values were not

needed to determine the inal operation result.
Anytime that the result of an operation is potentially or

likely not going to be needed as part of a inal result, it makes

sense to defer that operation until it is determined that the

result is actually needed. The most common example of
laziness occurs in expression evaluation. Consider the follow-

ing code:

int x = 5;
int y = 3;
if (x < 2 && y < 7) {
 ...

The simplest way to evaluate this expression would be to
evaluate each term and combine the terms:

5 < 2 => FALSE
3 < 7 => TRUE
FALSE && TRUE => FALSE

Notice that if the irst term evaluates to false, then the result
of the entire expression will always be false. Therefore, we
need not bother evaluating the second term unless the irst
term evaluates as true.

For Java programs, the Java Language Speciication speciies
that terms of an expression are evaluated left to right and any
terms not needed for the result will not be evaluated at all.

This often saves computation. It is also very useful:

MIKE DUIGOU

For Faster Java Collections,
Make Them Lazy
How adding lazy operations to ArrayList and HashMap improved performance
and reduced memory usage

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

29

//inside java /

if (foo != null && foo.bar() == 3) {

In this example, calling the bar() method requires that

foo be nonnull. If foo is null then attempting to evaluate the

second term of this expression would cause a NullPointer

Exception. The Java lazy evaluation rules ensure that the
second term is evaluated only when the irst term is true.
Logical AND (&&) terms can be thought of as equivalent to

nesting, so

if (foo && bar && baz) {

is equivalent to

if (foo)
 if (bar)
 if (baz)

This rewriting as nested conditionals also makes it clearer
why the unneeded terms are not evaluated. Lazy evaluation

also applies to logical OR (||) expressions, such as

if (true || something) {

The something term of this conditional expression is never
evaluated because the value of the expression can be deter-

mined before it is evaluated.

These examples of laziness in expression evaluation are
useful in writing eicient and, probably just as importantly,
concise program logic. Other forms of laziness are just as
beneicial, but the connection between decisions made in
program low and the beneit received usually isn’t as direct
or immediate.

If the result of a calculation is occasionally or frequently

discarded without being used, then it makes sense to avoid

using the resources required to produce it until it is necessary.

The most obvious saved resource is CPU cycles, but laziness

can also save memory in avoided

allocations and system resources

in avoiding unnecessary iles,
sockets, threads, database con-

nections, and more. Depending on

the situation, these savings can

be substantial.

Implementing laziness can be

a critical optimization strategy in

improving system performance. It

improves performance by avoid-

ing unnecessary work rather

than improving the eiciency of
performing the work. Laziness is

akin to reducing the number of database queries an applica-

tion makes by 30 percent as opposed to improving the per-

formance of database queries in the same app by 3 percent.

Spending your efort on the former, if it is feasible, is much
more efective.

The Challenge of Lazy Collections

The implementation of laziness in the Java Collections
Framework, which is already quite well optimized, came

about as a result of analysis of application behavior. The
Oracle Performance Scalability and Reliability (PSR) team
evaluated the performance of some Oracle frameworks and

the applications that ran on those frameworks. The PSR
team found that it was quite common for both the appli-

cation and the middleware to allocate ArrayList and

HashMap instances that were then never used in the life of

the object that contained them. About 2 percent of all allo-

cated ArrayList and HashMap instances never received any

elements. Further analysis found that the collections were

used in some cases, but weren’t always needed. Some work
by the PSR team was done to see if refactoring the application
to handle the cases where the collections were needed and

In a smaller number
of applications,
I found that laziness
provided up to a 20
percent reduction in
memory usage and
a similar reduction in
memory churn.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

30

//inside java /

where they weren’t could be handled by separate classes with
a common base class and with the sometimes-unused collec-

tions deined in one of the subclasses. This approach turned
out to not be viable because a lot of the cases were similar to

the following representative example:

public abstract class RestRequest {
 protected final Map<String,String> httpHeaders =
 new HashMap<>();
 protected final
 Map<String,List<String>> httpParams =
 new HashMap<>();
 protected final Set<Cookie> httpCookies =
 new HashSet<>();

RestRequest is a made-up example class that would be
used in an application handling HTTP REST queries. REST is
a common approach to building APIs using HTTP for com-

munications. In this example, each RestRequest object
is a speciically formatted HTTP request that represents a
call to a REST API provided by the host application. Each
RestRequest instance needs to present the important

aspects of an HTTP message to the application receiving the
request. This includes the HTTP headers (httpHeaders),

HTTP parameters from either query string or form data
(httpParams), and HTTP cookies (httpCookies). Each of

these types of HTTP features may be present in any HTTP
message, but the exact usage is determined by the individual
application providing the REST API and the client applica-

tions using the REST API.
Because the usage of HTTP features for any given request is

indeterminate, including the data structures in RestRequest

for each potential feature is problematic. HTTP headers,
parameters, and cookies are common and required parts of

the HTTP protocol, but applications aren’t obliged to use all
of these features and may even choose to use none of them.

Some REST APIs may use HTTP parameters where others

might use cookies and headers. One possible approach to

handling optional features would be to provide many variants

of the RestRequest class to express all the possible combi-
nations of HTTP features that might be used. This would be
both annoying and inconvenient to use, though. Even when

it could be determined that a particular HTTP feature will be
used for a particular type of request, it is common for that

feature to be used only on a fraction of the requests. Consider

that authenticated users might use cookies, whereas unau-

thenticated users of the same request would not. Perhaps a
majority of requests are from unauthenticated users.

It makes program logic much simpler to have a single

RestRequest class with the httpParams ield always avail-
able and initialized whether it is used or not. (I’ll get back
to this.)

Because the framework or application couldn’t be refac-

tored to eliminate the indispensable but frequently

unused httpParams and httpCookies ields, alternatives
were needed.

The overall goal was to improve application performance
by avoiding the cost of having a ield like httpParams in a

class unless the ield was actually used. One solution would
have been to lazily initialize the httpParams ield in the
RestRequest class—that is, create the HashMap only when

HTTP parameters were found to be present. This would have
required the addition of guard checks around all uses of the

httpParams:

if(httpParams != null)

But because the RestRequest class is designed to be

extended, all subclasses that extend RestRequest would

need to have similar checks on their use of httpParams.

Because there was a lot of existing code without these checks,
it was unreasonable to suggest that RestRequest might sud-

denly stop consistently initializing the ield.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

31

//inside java /

Allowing httpParams to some-

times be null would also have

made the logic of methods more

complicated with all of the added

guard checks that would require.

If the same approach were used

on many ields in RestRequest,

the logic of RestRequest meth-

ods and subclasses would be

overly focused on repeated checks

to determine which features of

RestRequest were in use. Over

time, inevitably, mistakes would

creep in or cases would be forgotten when other parts of

RestRequest changed. One missing guard check on a ield
containing null could ruin your whole day!

One solution—which is often useful, but not in this case—

would have been to leave unchanged the declaration portion

of httpParams,

protected final Map<String,List<String>> httpParams;

and move the initialization to constructors. In the con-

structors, if it could be determined that no HTTP param-

eters were present in a request, the httpParams ield could
be initialized to Collections.emptyMap() rather than

creating a unique HashMap instance for every request.

(Collections.emptyMap() along with emptyList() and

emptySet()—these and other similar utility methods in

the Collections utility class are an eicient way to provide
an empty collection. These empty collections are often used
rather than creating a unique instance for an empty item.

They are frequently better than returning null because they
require no more space and, by not returning null, the checks

for a null result that would be required can be eliminated.)

After irst pursuing adding laziness within the frame-

works and applications by avoiding creating HashMap and

ArrayList instances, it became clear that the most efec-

tive approach was to implement the laziness inside the Java

Collections Framework itself.

Updating Java Collections

Making modiications to fundamental Java classes such as
ArrayList and HashMap is serious business. There are mil-
lions of programmers and billions of lines of code using

these classes, and both the programmers and the programs

expect that Java will provide reliable, consistent behavior and
performance from version to version. The Java Collections
Framework is a contract with developers and programs to

provide speciied behavior. It is essentially impossible to
redeine the functionality of JDK classes—that is, to change
the contract—in Java updates or even major releases. Some
small reinements to the API contract are possible, but most
improvements available to the Java Collections Framework

are internal changes. Even internal changes must be consid-

ered carefully to ensure that they do not have unwanted side

efects or cause unexpected behavior changes.
Earlier, I said it would be diicult to use a class such as

the RestRequest example if some of the ields might be
null. Potentially null public or protected ields require addi-
tional work for anyone accessing them. Every dereference

of the ield must be guarded by a check that the ield is not
null. Failure to consistently check for null is a common

error in programs that have nullable ields in base classes.
It is often recommended not to allow protected or public

ields to be null. Handling potentially null ields is slightly
more manageable when the ield is private. This is because
all references to the ield are in a single ile and it is much
easier to reason about the possible values of the ield in all
object states.

Both ArrayList and HashMap use a package private array

ield as their core data structure for storing elements or map

Java 8 also introduced
a significant new lazy
implementation, the
Streams API. This
library utilizes
laziness as a core
principle.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

32

//inside java /

entries. Other than the ArrayList or HashMap object itself,
this array is the only other memory allocated by ArrayList

and for empty or nearly empty HashMaps, the array is the

biggest memory allocation. The heart of the laziness upgrade
to both classes was to add guard checks for the array ield
being null.

The primary beneit of the laziness added to ArrayList

and HashMap is that it delays and potentially avoids allocating

the array until the moment the irst element is placed in the
array or map. Allocation of the memory used for the back-

ing array is a signiicant cost for some applications. For other
applications, particularly where the unused collection is very

short-lived and none of the memory was known to be allo-

cated after the allocating method was complete, the beneit is
in saved computation from initializing the array.

Because the ield reference involved is for an array, the
JVM was already required to check that the array was non-

null before either indexing into the array or determining the
length of the array. The added guard checks were explicit
versions of implicit null checks that were already happening.

This meant that adding the guard checks caused no perfor-

mance penalty.

A second concern was that having the additional guard

checks and allocation logic in various methods would change

how HotSpot would choose to inline the methods or, more

important, not inline the methods, which could potentially

undermine performance. Inlining is an optimization used by

HotSpot for small methods. When HotSpot is compiling code

that invokes a short or simple method, it will often replace

the method call with the actual code of the invoked method.

There is a size limit on which methods HotSpot will inline.
Examination found that we were not near the inlining limit
boundary on any of the critical methods modiied by adding
laziness; and by reusing an existing internal method in a few
places we were able to improve the inlining done by HotSpot.

There were still a few methods, less critical ones, that were

slightly slower as a result of the laziness changes, but even

on general benchmarks and performance tests the changes

produced a net win. So far, I haven’t identiied any case where
the changes have produced a signiicant undesired efect.

Conclusion

When evaluating the memory usage of a JVM application,

there is more to consider than just the maximum memory
usage. Because the JVM uses garbage collection for memory

management, you must also consider the memory alloca-

tion rate and the garbage collection pressure. Memory alloca-

tion rate refers to the rate at which the application allocates

new objects and the size of those allocations. Applications
vary widely in their allocation rate, and it is often an impor-

tant factor in their throughput. Related to allocation rate is

the amount of efort that must be spent to garbage-collect
unused objects. Garbage collection pressure refers to how much

throughput you must sacriice for garbage collection to ensure
that the application always has suicient free memory to run.
Generally speaking, most reductions in allocation rate also

reduce the amount of garbage collection necessary.

In typical framework applications, the lazy initialization

changes to ArrayList and HashMap produced modest 1 per-

cent to 2 percent improvements in memory usage and allo-

cation rate and barely measurable performance gains. Just

as important, no applications had increased memory usage

or reduced performance. In a smaller number of applica-

tions, I found up to a 20 percent reduction in memory usage
and a similar reduction in memory churn. These dramatic
beneits for some applications while simultaneously pro-

viding small beneits to most applications and no known
negative impacts made the lazy initialization changes an

important improvement.

Considering again the RestRequest example, how would
the laziness changes to ArrayList and HashMap afect
its behavior and performance? The RestRequest ields

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

33

//inside java /

are still unconditionally initialized with inal ArrayList

and HashMap instances. This means that the usage of
RestRequest is unchanged. No user programs have to add

checks for any of its ields being null. In practice, though, we
are likely to see that many of the collection instances cre-

ated will be lazily empty—they will have deferred creation of

their element arrays, providing savings of both memory and

CPU cycles.
In any software system that has been reined over 20 years,

such as Java, it’s diicult to ind any implementation change
that is a unilateral beneit for all cases. In contemplating
this change, I made sure that the normal uses of ArrayList

and HashMap were not negatively afected. The analysis of
performance on critical methods like HashMap.get() typi-

cally examines the cost of every Java bytecode and every CPU
cycle—these are methods that are going to be run trillions

of times per year across millions of JVMs. Some slight move-

ment of performance cost, moving costs from one execution
path to a diferent, later path, would be acceptable, but any
degradation in performance would need to be inconsequential

and would probably need to be ofset by much larger perfor-

mance gains elsewhere.

The analysis of the problem began by looking at application
and framework behavior in the hopes that something could

be done to reduce the cost of unused collections. This type of
top-down performance analysis is, by far, the best approach

to improving application performance.

Other opportunities for using laziness have been consid-

ered for the Java Collections Framework. The most desirable
changes would be how HashMaps are built and resized. The
typical usage pattern of HashMap suggests that the imple-

mentation would beneit from using diferent data struc-

tures for small maps (and for larger maps before the irst
get() operation).

There are other examples of laziness within the Java class
library. The most common is to cache the result of hash

code computations inside the hashCode() method. This is
used with stellar performance beneits by String and other

classes. Other caching cases have also been added. Some

of these caches improve performance by avoiding repeated

work; others save memory by reusing the same data struc-

tures for multiple operations. Additional caching cases and

other lazy optimizations can be added if proved beneicial in
future Java updates. There also have been times when a cache
was wasteful or actually required too much efort to maintain
and it was removed from the implementation. In most cases,

because they don’t involve API changes, laziness improve-

ments to the Java libraries can be added with signiicant ben-

eit and little impact.
Java 8 also introduced a signiicant new lazy implementa-

tion, the Streams API. This library utilizes laziness as a core
principle and frequently delivers much better performance

than simpler declarative approaches.

Laziness is an important optimization that has had sub-

stantial beneits in the Java libraries. You should strongly
consider it if you need to improve the performance of a

library that’s in use by others and where many of the prin-

cipal optimizations, such as algorithm reinement, have
already been implemented. </article>

Mike Duigou (@mjduigou) works on Java-based ocean-going
robots at Liquid Robotics. He was previously a developer on the
Java Core Libraries team at Oracle and contributed to the core
collections and Java 8 lambda libraries. Duigou has also enjoyed
working on autonomous cars, dancing robots, and industrial real-
time applications.

How laziness afects the size of an ArrayList allocation

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://stackoverflow.com/questions/34250207/in-java-8-why-is-the-default-capacity-of-arraylist-now-zero/34250231

Written by leading Java experts, Oracle Press books offer the most defi nitive,

complete, and up-to-date coverage of Java available.

www.OraclePressBooks.com • @OraclePressAvailable in print and as eBooks

Your Destination for Java Expertise

Raspberry Pi with Java:

Programming the

Internet of Things (IoT)

Stephen Chin, James Weaver

Use Raspberry Pi with Java to create

innovative devices that power the

internet of things.

Introducing JavaFX 8

Programming

Herbert Schildt

Learn how to develop dynamic JavaFX

GUI applications quickly and easily.

Java: The Complete Reference,

Ninth Edition

Herbert Schildt

Fully updated for Java SE 8, this

definitive guide explains how to

develop, compile, debug, and run

Java programs.

OCA Java SE 8 Programmer I

Study Guide (Exam 1Z0-808)

Edward Finegan, Robert Liguori

Get complete coverage of all

objectives for Exam 1Z0-808.

Electronic practice exam questions

are included.

http://www.OraclePressBooks.com

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

35

//inside java /

Annotations appeared on the Java platform for Java 5 more

than ten years ago, and they have become an integral

part of the ecosystem. In this article, I go over a brief history

of how and why annotations came about and then dive into

technical details explaining how they operate, how they are

best used, and how to write your own.

Origins

The idea of adding metadata to source code is quite old and

comes from the simple realization that very often the code

you write doesn’t contain all the information a tool needs

to do its job. On the Java platform, an early form of annota-

tions began to appear before Java 5, but because the lan-

guage did not oicially support them, developers resorted
to the unlikely Javadoc tool to add annotations to their code.

Speciically, two tools brought annotations into the spotlight
in the early 2000s:

■■ EJBGen, which enabled developers to add Javadoc annota-

tions to their source code and which then generated the

complicated EJB XML descriptors
■■ XDoclet, which took EJBGen’s idea to the next level by pro-

viding a general framework for using Javadoc tags as anno-

tations for any domain, not just for EJBs

These two tools became popular very quickly and opened the

door for annotations to become oicially supported by the
JVM. JSR 250, Common Annotations for the Java Platform, was

created speciically for this purpose and was scheduled to ship
with Java 5. The idea was to make annotations type-safe and

extensible so that developers could easily write their own.

It’s interesting to note that since 2004, there has been only

one major update to annotations in the JDK: JSR 308, which

added more locations where annotations could be placed.

But that’s pretty much it. Today you are still using the same

annotations as speciied in 2005 with hardly any modiica-

tions. (JSR 308 added some minor utility that was discussed in

the March/April 2014 issue.) It’s hard to deny that JSR 250 has

been a stable success that enabled many innovations, which

I’ll discuss shortly.

When to Use Annotations

Like all tools, annotations should be used judiciously. They

are a great match for a certain category of problems but a

poor choice when key conditions are not met. The main

alternative to annotations is coniguration iles. Such iles
can hold the metadata that your code can’t contain, just like

annotations, so how do you decide whether speciic metadata
should be stored in annotations or in an external ile?

The general rule of thumb is: If the metadata is tied to a

Java element (method, ield, variable, class, package, and so
on), then it should be placed in an annotation. Otherwise, it

should be stored in a coniguration ile.
As I mentioned, EJBs were the irst target for annotations

because their deployment descriptors were complicated XML

iles that referenced methods in the code and added extra
information to them. This approach was error prone because

refactoring code (such as renaming a method) might not

be relected in the deployment descriptor, and the applica-

tion now fails to work. Instead, annotating the method that

CÉDRIC BEUST

Annotations: An Inside Look
How annotations work, how best to use them, and how to write your own

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/technetwork/articles/java/ma14-architect-annotations-2177655.html

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

36

//inside java /

is the target of the metadata is much safer (starting with

the fact that now you are no longer duplicating the name

of that method—a violation of the DRY principle: Don’t

Repeat Yourself).

Here are some other good examples of annotation uses:
■■ Code correctness. Annotations such as @Nullable,

@Deprecated, and @Override add important seman-

tic information to methods and ields that the compiler
can enforce.

■■ Test methods. Before TestNG and annotations came along,

JUnit was using relection to indicate that a method was
a test method, which required speciic naming conven-

tions. With an annotation, it’s no longer necessary to use

naming conventions.
■■ Persistence (for example, Hibernate). You can annotate

ields and methods in order to tie them to data stored in
the database.

■■ Dependency injection. Classes that need to be injected can be

annotated as such along with ields and parameters.
■■ Graphical toolkits. As an example, Android describes graphi-

cal layouts using XML; with annotations you can now

directly tie graphical elements (text views, buttons, and so

on) to the ield that holds their reference.
Note that all these examples share the same characteris-

tic: tying information to Java elements. In contrast, here

are a few examples of metadata that are not good its for
Java annotations:

■■ Deployment information such as host names, ports, pass-

words, and other authentication details
■■ Connection pools informing your application how to con-

nect to a database
■■ Parameters describing how an application should be

launched or what kind of information is accessible

at runtime

Important Annotations

Annotations are pretty much unavoidable in modern Java and

plenty of libraries provide their own, but there are a few that

stand out and that you should be using regularly.

@Nullable and @Nonnull (javax.annotation). These annota-

tions can be placed on ields and method parameters, and
they indicate whether these variables can be null. They are

extremely useful, and a lot of tools on top of the Java com-

piler (javac) recognize them (starting with the major IDEs).

You should use them at every opportunity. You will quickly

notice the number of null pointer exceptions in your codebase

sharply decreasing.

@Override. You are probably already familiar with this anno-

tation because it has been mandatory since Java 6, and for

good reason. This annotation must be placed on any method

overriding a method from a parent interface or class. It pre-

vents you from accidentally overriding a method or, con-

versely, from thinking you overrode such a method but did

not because of a typo.

@FunctionalInterface. This is a new addition to Java 8. It

makes sure that the interface so annotated is indeed a

functional interface—that is, an interface with exactly one

abstract method. The idea behind this annotation is that if

one day you or someone on your team accidentally adds an

abstract method to that interface, the compiler will issue

an error.

@SuppressWarnings. This annotation is self-explanatory.

Warnings are usually extremely useful, and you should never

turn them of globally. However, it’s occasionally useful to
turn them of for speciic statements or expressions when you
know that your code is safe but the compiler doesn’t.

Writing an Annotation

Let’s take a look at a popular annotation: @Test. Here is

its deinition:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

37

//inside java /

@Retention(RUNTIME)
@Target({METHOD})
public @interface Test {

Each line in the snippet above is important. Let’s go over

them one by one, starting from the bottom:

public @interface Test {

The syntax here is speciic for annotations. Annotations look
like Java classes but have several restrictions, which we will

cover shortly.

@Target({METHOD})

This annotation speciies what Java elements can be anno-

tated. METHOD is part of the java.lang.annotation

.ElementType enum, which lets you deine other locations
for annotations such as CLASS, CONSTRUCTOR, and so on.

@Retention(RUNTIME)

This annotation indicates whether your annotation will

be preserved in the class ile or discarded by the compiler.
If you want to be able to look up your annotation via relec-

tion, the retention should be set to RUNTIME. The other

options can be found in the java.lang.annotation

.RetentionPolicy class.

Content of an Annotation

It is possible to pass additional parameters to annotations:

@Test(description = "Verify that bug #121 is fixed")
@Table(name = "ACCOUNTS")

These additional parameters are called attributes. They are

deined as methods inside the declaration of your annotation:

public @interface Test {
 String description() default "";
}

Attributes are methods that don’t have a body and that can

optionally be assigned a default value. If you fail to use the

default keyword, then that attribute needs to be speciied
when the annotation is used; otherwise, the compiler will

issue an error. An important restriction on attributes is that

they need to be constants: primitive types or a string (and

they can’t be null).

There are two interesting details that were included in the

speciication in order to reduce the amount of verbosity found
in code using annotations.

If the annotation deines an attribute with the special name
value, then you can specify that attribute without the word

value. The following annotation:

public @interface Person {
 String value();
}

can be written as

@Person("John")

instead of the more common

@Person(value = "John")

In a similar vein, attributes of type Array can use a short-

hand version when that array has only one element:

public @interface Languages {
 String[] value();
}

can use

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

38

//inside java /

@Languages("English")

instead of the more verbose

@Languages(value = { "English" })

These syntactic shortcuts were designed to reduce the boiler-

plate code necessary when using annotations.

Annotations in Action

Now that you can deine simple annotations, how do you
actually use them? By design, annotations deined by third-
party developers are completely ignored by the compiler.

There are a few speciic exceptions that the compiler acts
upon (such as @Deprecated), but as a rule, annotations will

never modify the semantics of the code to which they are

applied. Therefore, the only way to make use of annotations

is to write a tool that will act upon them.

There are two ways such tools can be written: as external

tools or as annotation processors.

External Tools

External tools are the simplest approach to processing excep-

tions: you implement a separate application with its own

main() method, and users of your annotations simply need

to run this tool on their classes. This is the approach used by

TestNG, JUnit, Guice, and other well-known tools. Such tools

are typically run as part of your build, and the output of these

tools can be quite varied: source iles, documentation iles,
XML, and so on. There is really no limit on what these tools

can do.

The JDK comes with an API to look up annotations in

class iles that is sprinkled throughout the relection pack-

age. For example, you can either obtain all the annotations

on a given class or only retrieve speciic ones. Consider the
following code:

@Languages({ "English", "French"})
class MyClass { … }

We can look up the annotation as follows:

Languages[] languages =
 getClass().getAnnotationsByType(Languages.class);
for (Languages language : languages) {
 System.out.println(
 "Languages spoken: " + language.value());
}

Annotation Processors

Annotation processors are a relatively recent addition to the

JDK, and they have opened up a whole new level of innova-

tion in the annotation ield. Annotation processors were born
from the observation that a large proportion of tools that

process annotations generate Java source iles, which then
need to be compiled. Therefore, it appeared useful to inte-

grate such processing inside the Java compiler itself so that

the process could be streamlined.

The idea behind annotation processors is to declare them

to the compiler so that it will invoke the processors irst and
then automatically compile the resulting output. Then the

compiler resumes its usual process after adding your com-

piled classes to its classpath.

The API is a bit diferent from the relection code I just
covered, with a few variations. For example, instead of you

looking up annotations, the compiler notiies you when-

ever it encounters an annotation. This approach is much

more eicient.
Writing annotation processors is a bit more involved and

would require a full article of its own. So for now, I’ll explain

the value of annotation processors.

Generating source code is not a new practice on the JVM.

But because annotation processors hook directly into the

compiler, a lot of the pain in building and processing the

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

39

//inside java /

output is alleviated. There are several mechanisms that make

running annotation processors completely seamless. For

example, all it takes is for the JAR ile containing your pro-

cessor to be on the classpath for javac to detect it and run it.

Annotation processors have become particularly impor-

tant on Android because they enable library developers to

replace relection calls (which are slow and therefore a spe-

cial concern on Android) with direct calls. On top of that, the

generated source code makes it possible to statically verify

that your code is correct, something that can’t be achieved

with relection.

Conclusion

Annotations are an integral part of the Java platform. They

have allowed the language and the ecosystem to evolve

in innovative and productive directions that wouldn’t

have been possible otherwise. It’s important to understand

how they work and to know what they are capable of so

that you can make informed decisions about using them in

your own codebase. </article>

Cédric Beust (@cbeust) has been writing Java code since 1996,
and he has taken an active role in the development of the language
and its libraries through the years. He holds a PhD in computer
science from the University of Nice, France. He was a member of
the Expert Group that designed annotations for the JVM.

Oracle’s Java annotations tutorial

Checker Framework (which uses annotations heavily to

check code)

learn more

Oracle Cloud Services for
Java Developers
Oracle has been rolling out cloud services for developing
and deploying Java applications. These services comple-
ment existing services that Oracle ofers at all the major
cloud tiers: infrastructure as a service (IaaS), platform as
a service (PaaS), and software as a service (SaaS). With
these rollouts, there are now multiple cloud services of
interest to Java developers, of which these three will be
discussed in technical detail in future issues.

Oracle Application Container Cloud provides rapid self-
service provisioning of dedicated and isolated Java SE and
Node runtime application containers in the cloud. These
containers run Oracle JDK (version 7 or 8), which includes
Oracle Java Flight Recorder, a tool that is not available in
the standard JDK. The solution also ofers Node.js, which
is the server-side JavaScript environment. Billing is done
either by the month or by the hour and billed per giga-
byte of RAM.

Oracle Developer Cloud Service is a free entitlement of
Oracle Java Cloud Service (see next item) and is described
as a “PaaS environment for the enterprise.” It includes
instances of Git, Maven, Hudson (the continuous integra-
tion tool), a tasks tool, and a wiki. The Hudson instance
allows three concurrent builds.

Oracle Java Cloud Service ofers Oracle WebLogic
Server (either 11g or 12c) running either in a cluster or
on dedicated virtual machines. This service also ofers
Oracle Coherence caching and in-memory data grid as
an option. An additional SaaS Extension enables inte-
gration with Oracle Software as a Service (including
Oracle Sales Cloud, Oracle Service Cloud, and Oracle
Marketing Cloud).

//enterprise /

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/tutorial/java/annotations/
http://types.cs.washington.edu/checker-framework/
https://cloud.oracle.com/en_US/acc
https://cloud.oracle.com/en_US/developer_service
https://cloud.oracle.com/en_US/java

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

40

//new to java /

Enumerations—or enums for short—are Java constructs

that are not used as much as they should be. They aren’t

one of those big, bold, buzzy concepts that get people excited

or force themselves on you. Rather they quietly improve code,

making it more reliable and more readable.

If you’re new to Java, then it’s entirely possible that you’re

writing good, functioning code but are not using enums. If so,

you’re not alone.

There are several reasons why some developers don’t use

them. First, early versions of Java did not have enums. Some

programmers may have learned Java before Java 5, when

enums were added to the language, and they never got around

to changing their habits. Others may have come from dif-

ferent languages that did not support enums. And lastly, you

might not have felt the need to use them because you were

perfectly able to solve your problems without them. None of

these are good reasons to continue ignoring them.

Enums enable you to make your code signiicantly bet-
ter: more robust, more type safe, less error-prone, and more

elegant. And these things matter. So sit back and read on.

When and Why to Use Enums

Let’s examine the use of enums with an example. Suppose

you want to write a text-based adventure game—something

similar to Colossal Cave Adventure or Zork, two classic com-

puter games. Then you will have a set of command words that

the user can type in. And let’s say the valid command words

are go, look, take, help, and quit.

Somewhere in your code, you are likely to have a deini-
tion of those command words. In a straightforward irst
implementation, they might be deined in an array of strings,
like this:

private static final String[] validCommands = {
 "go", "look", "take", "help", "quit"
};

Somewhere else in your program, you will have some code

that reacts to these words being entered. The code then

calls the right method to act on them. In this code snippet,

I assume that the String variable commandWord holds the

word that was typed in.

switch (commandWord) {
 case "go":
 goRoom(secondWord);
 break;
 case "look":
 look();
 break;
 case "take":
 takeItem(secondWord);
 break;
 case "Help":
 printHelp();
 break;
 case "quit":
 quit();

MICHAEL KÖLLING

PHOTOGRAPH BY JOHN BLYTHE

Making the Most of Enums
Anytime you have a set of known constant values, an enum is a type-safe representation
that prevents common problems.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://en.wikipedia.org/wiki/Colossal_Cave_Adventure
https://en.wikipedia.org/wiki/Zork

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

41

//new to java /

 break;
}

(An alternative would be to deine a sequence of int con-

stants for these commands, and then translate the input

string to a number and switch on the int constant. This

popular variant has the same problems that I discuss with

our solution here.)

What’s wrong with this solution? There are really two sepa-

rate fundamental problems that immediately stand out: type

safety and internationalization.

Let’s deal with type safety irst. The short code segment
presented above is quite straightforward and easy to under-

stand. It works, right? In fact, it doesn’t. There is a bug in the

code. Did you spot it?

The problem is that the help command has been mistyped

in the switch statement as Help. Even though it was our

intention that the commandWord should only ever be one of

the strings listed as valid commands, there is nothing stop-

ping us from assigning invalid commands or comparing it

to invalid commands. Because the declared type is String,

any string will do. In efect, our type system is not good
enough. The declared type does not properly describe the set

of acceptable values, and (logically) illegal values can be used

without the type system being able to detect this.

Enums to the Rescue

To avoid this problem, we can rewrite our code using enums.

We irst write an enum declaration:

public enum CommandWord
{
 GO, LOOK, TAKE, HELP, QUIT
}

This declaration should be treated like a class and written

in its own ile. It deines the type CommandWord and the ive

listed names as valid values for that type. In other classes,

we can then declare variables of this type and assign values.

For example:

CommandWord command = CommandWord.GO;

And importantly, we can rewrite our switch statement to

the following:

switch (commandWord) {
 case GO:
 goRoom(secondWord);
 break;
 case LOOK:
 look();
 break;
 case TAKE:
 takeItem(secondWord);
 break;
 case HELP:
 printHelp();
 break;
 case QUIT:
 quit();
 break;
}

The deinition of the command words in this version (as an
enum, instead of a string array) is not only clearer and sim-

pler, it also creates type safety: if you now mistype a case

label or a value in an assignment, the compiler will detect

this and notify you. This is a real win—we have our strong

type system back that Java was designed for.

By the way, we can also use the double equals symbol (==)

for checking equality, instead of the .equals() method that

we had to use with strings:

if (command == CommandWord.QUIT) ...

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

42

//new to java /

What Really Is an Enum?

Some people use enums only as described here and think of

them as similar to int constants: named values that can be

assigned and recognized later. But this is not the complete

truth, and if you stop here, you have only scratched the sur-

face and are missing out on some of the best features.

Enum declarations are full classes, and the values listed

are constant names referring to separate instances of these

classes. The enum declaration can contain ields, construc-

tors, and methods, just like other classes. Here is an extended

version of the previous enums:

public enum CommandWord
{
 GO("go"), LOOK("look"), TAKE("take"),
 HELP("help"), QUIT("quit");
 private String commandString;

 CommandWord(String commandString)
 {
 this.commandString = commandString;
 }

 public String toString ()
 {
 return commandString;
 }
}

The important aspects are the following:
■■ Enum declarations are classes, and enum values refer

to objects.
■■ For every declared enum value, an instance of the class is

created and assigned to that value.
■■ No other instances of this class can be created later.
■■ Every diferent enum value will refer to a diferent object,

and the same value will always refer to the same object;

this cannot be changed.

■■ Enums create their own namespace, so diferent enum
classes may use the same value, but these are kept sepa-

rate. If, for example, I have an enum class BoardGames, the

enum values BoardGames.GO and CommandWords.GO are

separate and do not interfere with each other.

The last aspect—that no other instances may be created—is

ensured by making the constructor private. It is not neces-

sary to declare this explicitly: the constructor is automatically

private, and it is an error to try to make it public.

The previous code will generate ive enum objects—one for
each value. And any reference in other code to CommandWord

objects can be to only one or more of these enums. Any

attempt to create other objects will generate a compile-

time error.

Enums may contain any number of ields, constructors, and
methods. The fundamental diference when compared with
“normal” classes is in how enum instances come into exis-

tence. While other classes start without any instances and

provide a constructor for clients to create as many objects as

they like, enums provide no constructor (to the outside), and

instead provide a set of ready-made instances.

The fact that enum values are objects, not ints, is impor-

tant. It means that enums provide not only identity but also

state and behavior.

The Full Truth

The irst question that now comes to mind is this: If the con-

structor cannot be called from the outside, what is it used for?

The answer lies in the modiied syntax we have used for
enumerating our enum values. Instead of just

 GO

as in our irst version we have now written

 GO("go")

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

43

//new to java /

This extension—efectively adding a parameter list to the
enum value—invokes the enum’s constructor. The expression

within the parentheses is the actual parameter passed to the

constructor. The enum object is still of class CommandWord, as

before, but we are now storing a string attribute inside it. And

the value for this attribute is passed in to our enum object via

its constructor. We can store any number and type of attri-

butes inside an enum object—that is, in instance ields—just
like in any other object.

Read our CommandWord deinition again—it should all
slowly come together and start to make sense now.

The great advantage of this scheme is that we can now use

a String again to recognize the typed word (for example,

"help") by comparing the input string against the command

strings stored inside our enums, but our program logic is

independent of these strings.

Earlier, I mentioned that another problem with our irst
version was internationalization: If we decide to translate our

program into a diferent language (let’s say the "help" com-

mand is now "hilfe") we run the danger of introducing

errors. If we just change the command words in the array,

the program will compile but not function; none of the com-

mands will be recognized, but we don’t get an error. The

problem is that the strings are not only used for input but

also for the program logic. That is bad.

In our new enum version, that problem has been resolved.

The actual command strings are mentioned only once; if

they change, they need to be changed only in one location,

and the program logic works with logical values—the enum

constants—that will continue to work. (In practice, the input

commands would be read out of a locale-dependent text ile,
but the principle is the same.)

Under the Hood

Enums are really implemented as classes, and enum val-

ues are their instances. There is little special about this, and

knowing this helps us understand how they work and what

we can do with them.

Enum classes all automatically inherit the Java standard

class Enum from which they inherit some potentially use-

ful methods (it also means that they cannot extend another

class).

The inherited methods you should know about are name(),

ordinal(), and the static method values().

The name() method returns the name exactly as deined in
the enum value. The ordinal() method returns a numeric

value that relects the order in which the enums were declared,
starting with zero. For example,

CommandWord cmd = CommandWord.GO;
System.out.println(cmd.name());
System.out.println(cmd.ordinal());

will print

GO
0

In practice, these two methods are much less useful than you

might irst think. Your code typically should not depend on
the actual enum name (so the name() method is not often

useful; it is much better to override and use the toString

method for that purpose), and if you write your code well you

will rarely need the ordinal number.

The static values() method is more often useful. It

returns an array of all enum values and can be used to iterate

over them. Here’s an example.

CommandWord[] ca = CommandWord.values();

for (CommandWord cw : ca) {
 System.out.println(cw);
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

44

//new to java /

Or, if you are familiar with Java 8’s streams, you can also

write the following:

Arrays.stream(ca).forEach(System.out::println);

The Enum Singleton Pattern

Once you understand how enums are really implemented

under the hood (most importantly, that they are just

classes with a diferent instance creation mechanism), you
might discover some helpful ways to use them. One exam-

ple I use regularly is to employ an enum to implement a

singleton pattern.

A singleton is employed to ensure that only a single

instance exists of a given class. It is often written by creating

the instance in the class, making the constructor private,

and providing a static factory method to hand out the

instance, as in the following example:

public class Singleton {
 private static Singleton instance =
 new Singleton();

 public static Singleton getInstance()
 {
 return instance;
 }

 private Singleton()
 {
 ...
 }
}

The singleton instance can then be accessed from the outside

by writing

Singleton s = Singleton.getInstance();

A nice alternative is to use an enum to deine the singleton:

public enum EasySingleton {
 INSTANCE;
}

No more work is needed, and the instance can easily be

accessed from client code:

EasySingleton s = EasySingleton.INSTANCE;

Fields and methods can still be added to the singleton class as

before. Enum instance creation is by default thread-safe, so

this method is safe to use in a multithreaded application.

Conclusion

I hope this short introduction has demonstrated the advan-

tages of enums. Anytime you ind yourself deining a set of
constant values, you should think of enums as your preferred

way of representing them. This choice gives you type safety,

support for internalization, and warnings at compile time

about possible coding errors. Overall, it will make your code

more readable and less prone to errors. </article>

Michael Kölling is a professor at the University of Kent, UK. He
has published two Java textbooks and numerous papers on ob-
ject orientation and computing education topics, and is the lead
developer of BlueJ and Greenfoot, two educational programming
environments. Kölling is an Oracle Java Champion, a UK National
Teaching Fellow, a Fellow of the UK Higher Education Academy,
and a Distinguished Educator of the ACM.

Oracle Java tutorial on enums

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

45

//enterprise java /

Java EE applications usually rely on a data repository for

storage of application data. An application data repository

can be a typical RDBMS (relational database management

system) such as Oracle Database, MySQL, PostgreSQL, or

Microsoft SQL Server. Often in modern applications, though,

NoSQL databases such as MongoDB, Cassandra, Couchbase,

Oracle NoSQL Database, or Neo4j are used as back-end data

repositories. Regardless of the data repository solution for a

Java EE application, the Java Persistence API (JPA) plays a vital

role for the storage and retrieval of application data.

In my article in the May/June 2015 issue of this magazine,

“What’s New in JPA,” I took a look at a handful of the fea-

tures that were added to JPA 2.1, which is part of the Java EE 7

release. In that article, I covered features such as attribute

conversion, schema generation, named stored procedures,

and more. I also touched briely on a new feature for the
Criteria API: bulk operations. In this article, I do a deeper dive

into the Criteria API to explain more of its beneits, which
include the ability to create queries without using strings of

text. I also take a deeper look at some of the newer features

that were added as part of JPA 2.1.

Constructing JPA Queries

As you may know, there are a handful of ways to query,

update, and delete data using JPA. Let’s take a brief look at

each of them to refresh our memory, and then we’ll explore

more detail about the Criteria API. In these examples, I’ll use

the same basic SELECT query for each example so that you

can gain a better understanding of each. Namely, I’ll select all

records from the POOLS database table. Listing 1 demonstrates

each of the techniques for performing this simple query

in JPA.

Listing 1.

// Named Query
public List<Pool> getAllPoolsNamed(){
 return em.createNamedQuery("Pool.findAll")
 .getResultList();
}

// Native Query
public List<Pool> getAllPoolsNative(){
 List<Pool> pools = (List<Pool>)
 em.createNativeQuery(
 "select * from Pool",
 com.acme.acmepools.entity.Pool.class)
 .getResultList();
 return pools;
}

// JPQL Query
public List<Pool> getAllPoolsJPQL(){

JOSH JUNEAU

What’s New in JPA:
The Criteria API
Create queries and update databases with Java entity classes
and fields, rather than with strings of SQL.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

46

//enterprise java /

 return em.createQuery("select o from Pool o")
 .getResultList();
}
// Criteria API Query
public List<Pool> getAllPoolsCriteria(){
 CriteriaBuilder cb = em.getCriteriaBuilder();
 CriteriaQuery cq = cb.createQuery();
 Root<Pool> from = cq.from(Pool.class);
 TypedQuery<Pool> typedQuery =
 em.createQuery(cq.select(from));
 return typedQuery.getResultList();
}

Named queries, which can be deined in a few diferent ways,
basically map a typed query to a speciied name. The query
can later be called upon by name, and JPA will then perform

the assigned query. Native queries are strings of text that

formulate a SQL query using the native syntax of the target

database platform. Native queries have a tendency to be less

portable. One of the most frequently used techniques for que-

rying with JPA is to use the Java Persistence Query Language

(JPQL). Similar to native queries, JPQL queries are constructed

of strings of text to formulate a query using JPQL syntax. JPQL

is based on the abstract schema of entity classes that have

been registered with a persistence context. All related objects

of those entity classes can also be managed via JPQL. The
advantages of using JPQL are

that the syntax is similar to

standard SQL, and JPQL que-

ries are portable regardless

of the underlying datastore—

even if it’s NoSQL.

Lastly, the Criteria API can

be used to construct queries

in a strongly typed manner

using the Java entity classes

and ields, rather than using

strings of text. Similar to JPQL, the Criteria API is also based

upon the abstract schema of entity classes, so it works in

concert with the persistence context. Looking at the end of

Listing 1, it is plain to see that the Criteria API can be rather

verbose. However, there are some signiicant advantages to
using the API. Let’s take a look at those.

Getting Started with the Criteria API

The Criteria API allows you to build database queries in a
strongly typed manner from objects, using all Java code. Doing

so cuts down on the possibility for errors, because you no longer

need to worry about making sure that typed JPQL or SQL que-

ries are error-free. Another advantage is that these queries are

completely portable, meaning that the queries are independent

of the underlying datastore. The API also contains an extensive
Metamodel API, which assists in producing type-safe queries.

The Criteria API query shown at the bottom of Listing 1 fol-

lows the procedural set of steps that are typically followed to

create a query and retrieve data. Let’s walk through each step

in detail.

First, create a CriteriaBuilder object from the

EntityManager or EntityManagerFactory:

CriteriaBuilder cb = em.getCriteriaBuilder();

Next, create a CriteriaQuery object from the

CriteriaBuilder:

CriteriaQuery cq = cb.createQuery();

The CriteriaQuery can be used to designate against which

entities the query will be executed. To do this, call its from

method and pass the class object for the entity; it will return

a Root object of the given entity class type. The Root repre-

sents the entity from which all navigation will originate. This
example navigates over the Pool entity:

An advantage is that
Criteria API queries are
completely portable,
meaning that the queries
are independent of the
underlying datastore.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

47

//enterprise java /

Root<Pool> from = cq.from(Pool.class);

Then use the Root to create a TypedQuery object. To do that,
call the EntityManager.createQuery() method, and

pass the CriteriaQuery.select method, along with the

Root object:

TypedQuery<Pool> typedQuery =
 em.createQuery(cq.select(from));

Lastly, retrieve the results by calling the TypedQuery

.getResultList() method:

typedQuery.getResultList();

Once the query has been executed and results are returned,

any ields from the speciied entity can be navigated,
because they are all available in the object. Similarly,

any related records are made available. For instance,

Listing 2 shows how to use a Pool. The Pool entity contains a

Collection<Customer> ield that can be used for retriev-

ing Customer objects that own a Pool of the speciied type. In
the entity class, the fetch mode is set to FetchType.LAZY,

meaning that the Collection<Customer> is available only

when the getCustomers() method is explicitly called upon.

If I wanted to have the Collection retrieved at the same

time as the Pool objects, the fetch mode should be set to

FetchType.EAGER.

Listing 2.

@Entity
@Table(name = "POOL")
@XmlRootElement
@NamedQueries({
 @NamedQuery(name = "Pool.findAll",
 query = "SELECT p FROM Pool p"),
 . . .

 })

. . .
public class Pool implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @Basic(optional = false)
 @NotNull
 @Column(name = "ID")
 private Integer id;
 @Size(max = 10)
 @Column(name = "STYLE")
 private String style;
 @Size(max = 10)
 @Column(name = "SHAPE")
 private String shape;
 // @Max(value=?) @Min(value=?)//if you know
 // the range of your decimal fields, consider
 // using these annotations to enforce
 // field validation
 @Column(name = "LENGTH")
 private Double length;
 @Column(name = "WIDTH")
 private Double width;
 @Column(name = "RADIUS")
 private Double radius;
 @Column(name = "GALLONS")
 private Double gallons;
 @Column(name = "SHALLOW_DEPTH")
 private Double shallowDepth;
 @Column(name = "DEEP_DEPTH")
 private Double deepDepth;
 @OneToMany(mappedBy = "pool",
 fetch=FetchType.LAZY)
 private Collection<Customer> customer;

 public Pool() {
 }

 . . .

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

48

//enterprise java /

}

Working the Metamodel

Now that you know how to create a standard query and

retrieve results, it is time to learn how to really exploit the

power of the Criteria API. To dig into the API and main-

tain type-safe operation, work with the metamodel of the

application entities. All entity classes that are used with the

Criteria API have a class that is either constructed at runtime

behind the scenes or statically developed via the use of anno-

tations. A metamodel allows direct access to each of the ields
within the entity without passing the string-based name of

the ield. This approach creates a type-safe programming
model. Listing 3 shows the statically typed metamodel class

for the Pool entity.

Listing 3.

import javax.persistence.metamodel.*;

@StaticMetamodel(
 com.acme.acmepools.entity.Pool.class)
public class Pool_ {

 public static volatile
 SingularAttribute<Pool, Integer> id;
 public static volatile
 SingularAttribute<Pool, String> style;
 public static volatile
 SingularAttribute<Pool, String> shape;
 public static volatile
 SingularAttribute<Pool, Double> length;
 public static volatile
 SingularAttribute<Pool, Double> width;
 public static volatile
 SingularAttribute<Pool, Double> radius;
 public static volatile
 SingularAttribute<Pool, Double> gallons;
 public static volatile

 SingularAttribute<Pool, Double> shallowDepth;
 public static volatile
 SingularAttribute<Pool, Double> deepDepth;
 public static volatile
 CollectionAttribute<Pool, Customer> customer;
}

There are two types of metamodel classes: canonical and
noncanonical. The class in Listing 3 shows a noncanonical

metamodel class, which is explicitly created by the applica-

tion developer. However, development of such a noncanoni-

cal metamodel class might compromise portability across JPA

providers. Each provider, in turn, is expected to generate a

canonical metamodel class for each entity. Therefore, unless
there is a good reason to develop the metamodel class, it

might be best to use the canonical class that is generated at

compilation time.

There are several ways to use the metamodel to achieve the
desired result. The CriteriaBuilder can be used to obtain a

number of Predicate or Expression objects that are used to

ilter results. See the JavaDoc for more details. A Predicate

is used to set a boolean condition, and an Expression is

used to build the condition. In the case of our Pool entity,

suppose that we wanted to set a condition to retrieve all enti-

ties where the shape was rectangular. In this case, to set the

condition, use the CriteriaBuilder to obtain a Predicate

object, passing the expression that sets the condition to get

the Pool_.shape ield, along with the value of the condition
("RECTANGLE") as the second argument. The Pool_.shape

reference is also known as a path expression.

Predicate condition =
 cb.equal(from.get(Pool_.shape), "RECTANGLE");

Note that if you were not using the Metamodel API, it would

be possible to produce the same Predicate by passing the

string-based name of the ield within the condition, as shown

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

49

//enterprise java /

below. However, this would increase the potential for run-

time errors because the ield name would not be checked
during compilation.

// Using a string-based field name
// Not the preferred approach
Predicate condition =
 cb.equal(from.get("shape"), "RECTANGLE");

After obtaining the Predicate, the CriteriaQuery can

then be altered by initiating a call to the where() method,

passing the Predicate. The where() method acts as a

modiier to the initial CriteriaQuery object, allowing

the query to be altered to set one or more conditions. The
CriteriaQuery also contains a number of other modiiers.
See the JavaDoc for more details.

cq.where(condition);

Lastly, obtain the TypedQuery object by calling upon the

EntityManager’s createQuery() method and passing the

CriteriaQuery object. Finally, obtain the ResultList from

the TypedQuery. Listing 4 shows the complete example code.

Listing 4.

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery cq = cb.createQuery();
Root<Pool> from = cq.from(Pool.class);
Predicate condition =
 cb.equal(from.get(Pool_.shape), "RECTANGLE");
cq.where(condition);
TypedQuery<Pool> typedQuery = em.createQuery(cq);
return typedQuery.getResultList();

In the case where there is more than one condition that needs

to be applied to your query, simply create a new Predicate

and then pass to the CriteriaQuery.where() method each

of the Predicate objects separated by commas. Listing 5

demonstrates a query that returns all ROUND pools that

can hold more than 25,000 gallons of water. This particu-

lar listing certainly shows the beneits of the strongly typed
Criteria API.

Listing 5.

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery cq = cb.createQuery();
Root<Pool> from = cq.from(Pool.class);
Predicate condition1 =
 cb.equal(from.get(Pool_.shape), "ROUND");
Predicate condition2 =
 cb.gt(from.get(Pool_.gallons), 25000);
cq.where(condition1, condition2);
TypedQuery<Pool> typedQuery = em.createQuery(cq);
return typedQuery.getResultList();

For instance, if you were to pass a String to the Criteria

Builder.gt() method, the compilation will fail because

it expects a numeric value. It is easy to reconstruct this

CriteriaQuery to make it more closely resemble SQL

or JPQL syntax, if you desire. Rather than passing the

Predicate conditions and calling upon the EntityManager

.createQuery() separately, we would perform these same

tasks using a builder pattern to produce a TypedQuery object.

Moreover, we can create a List of Predicates or conditions

to make the code more manageable. There are other methods
that can be invoked within the query builder chain to perform

ordering, capture distinct ields, and so forth. Listing 6 dem-

onstrates the same query that we used in Listing 5, but with

this streamlined syntax, and sorted by the number of gallons.

Listing 6.

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery cq = cb.createQuery();
Root<Pool> from = cq.from(Pool.class);
List<Predicate> conditions = new ArrayList();
conditions.add(

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

50

//enterprise java /

 cb.equal(from.get(Pool_.shape), "ROUND"));
conditions.add(
 cb.gt(from.get(Pool_.gallons), 25000));
TypedQuery<Pool> typedQuery = em.createQuery(cq
 .select(from)
 .where(conditions.toArray(new Predicate[] {}))
 .orderBy(cb.asc(from.get(Pool_.gallons)))
);
return typedQuery.getResultList();

Performing Joins

Often, applications require queries that return data from

more than one database table or entity class. In the data-

base world, we would use SQL joins to relate records from

more than one table to each other. For instance, if we wanted

to retrieve all customers of the Acme Pool company that

had an INGROUND pool, we would join the POOL table with

the CUSTOMER table in the POOL_ID column, because each

CUSTOMER record contains a POOL_ID that relates to a model

of pool that is stored in the POOL table. Such a SQL statement

might look as follows:

select c.name
from customer c,
 pool p
where c.pool_id = p.pool_id
and p.style = 'INGROUND';

This query would return each customer’s name, where the
customer is on record as owning an INGROUND style pool. To
perform a similar join using the Criteria API, simply retrieve a

Root for the entity on which you would like to join, and then

invoke the Root.join() method, passing the path expres-

sion for the ield on which you would like to perform the join.
This will return a Join object that you can then use within

a selection.

Root<Pool> pool = cq.from(Pool.class);
Join<Pool, Customer> poolCustomers =
 pool.join(Pool_.customer);

In Listing 7, you can see the complete code, where the same

join that was performed earlier using SQL is done using the

Criteria API.

Listing 7.

public List<Customer> ingroundPoolCustomers() {
 CriteriaBuilder cb = em.getCriteriaBuilder();
 CriteriaQuery<Customer> cq =
 cb.createQuery(Customer.class);

 Root<Pool> pool = cq.from(Pool.class);
 Join<Pool, Customer> poolCustomers =
 pool.join(Pool_.customer);

 TypedQuery<Customer> query = em.createQuery(
 cq.select(poolCustomers)
 .where(cb.equal(pool.get(Pool_.style),
 "INGROUND"))
);
 return query.getResultList();

}

The Criteria API’s Latest Features

In my earlier article on the new features in JPA, I briely cov-

ered some features that were added to the Criteria API with

the release of JPA 2.1 (in Java EE 7): bulk updates and bulk

deletions. Now, I want to cover these new features in more

detail. In JPA 2.1, the CriteriaUpdate and CriteriaDelete

objects were added to the API, and the CriteriaBuilder

was extended so that it could be used to produce these objects

for performing bulk update and delete operations. Let’s

examine these.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

51

//enterprise java /

Bulk updates. In some instances, it makes sense to apply an

update to a large number of database records. Perhaps you

need to update the cost for all customers in a particular city

due to material increases, or maybe all customers with a spe-

ciic pool style need to be updated to enable or disable main-

tenance due status. In the following example, I use the latter

scenario so that all customers of a speciied pool type will
have maintenance either enabled or disabled when the update

is executed.

To perform a bulk update, use a CriteriaBuilder to

generate a CriteriaUpdate object that is set to the type of

entity you want to update. In the following example, I want

to update the Customer entity, so I call the Criteria

Builder.createCriteriaUpdate() method, passing it

the Customer.class:

CriteriaUpdate<Customer> customerUpdate
 = builder.createCriteriaUpdate(
 Customer.class);

The CriteriaUpdate object can then be used to indicate

which ield(s) of the entity will be updated, and under which
conditions the update will occur.

In the following example, I am using a Join<Customer,

Pool> object identiied as poolCustomers to retrieve the

style of pool that each customer owns. Therefore, I call the
CriteriaUpdate set() method, passing the path expres-

sion to the ields I want to update, along with the values to
set. Next, I call the where() method, which speciies the
conditions under which the update is applied. Once again, I

can use the builder pattern:

customerUpdate.set(
 customer.get(Customer_.currentMaintenance),
 enabled)
 .where(
 builder.equal(

 poolCustomers.get(Pool_.style),
 poolStyle);

Once all of the appropriate ields have been set and conditions
have been put into place, I create a Query object by calling the

EntityManager createQuery() method and passing the

customerUpdate:

Query q = em.createQuery(customerUpdate);

Lastly, I invoke the executeUpdate() method to execute the

update. The complete listing for this bulk update example is
shown in Listing 8.

Listing 8.

public void updateMaintenanceByPoolType(
 String poolStyle, boolean enabled) {
 CriteriaBuilder builder =
 em.getCriteriaBuilder();
 CriteriaUpdate<Customer> customerUpdate =
 builder.createCriteriaUpdate(
 Customer.class);
 Root<Customer> customer =
 customerUpdate.from(Customer.class);

 Join<Customer, Pool> poolCustomers =
 customer.join(Customer_.pool);

 customerUpdate.set(
 customer.get(
 Customer_.currentMaintenance), enabled)
 .where(builder.equal(
 poolCustomers.get(Pool_.style),
 poolStyle));
 Query q = em.createQuery(customerUpdate);
 q.executeUpdate();
 em.flush();
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

52

//enterprise java /

Bulk deletions. There might be a circumstance in which it is
appropriate to delete more than one record from a database

in a single invocation. A bulk update can be performed in

such cases, eliminating the need to perform multiple sepa-

rate deletions using a looping mechanism, as was done in the

past. For instance, suppose the Acme Pools company wanted

to delete all customers whose pool size is greater than a set

number of gallons. This would be a perfect case for using the
bulk deletion feature.

In much the same way that bulk updates are implemented,

a bulk deletion can be performed via a CriteriaDelete

object. In this case, we would like to create a Criteria

Delete object of the Customer type, as follows:

CriteriaDelete<Customer> customerDelete
 = builder.createCriteriaDelete(
 Customer.class);

Because there are no values to set for a deletion, Criteria

Delete is simpler to use than CriteriaUpdate. To perform
the deletion, call the where() method, passing the condi-

tions that must be met for the deletion to occur. In this case,

the number of gallons in the customer’s pool must be more

than the threshold. So, the CriteriaBuilder gt()

method is called, passing the path expression to the Pool_

.gallons ield, along with the gallons threshold as the
second argument:

customerDelete
 .where(builder.gt(poolCustomers.get(
 Pool_.gallons),
 gallons));

Once again, simply create a query from the CriteriaDelete

object, and then invoke the executeUpdate() method

to perform the deletion. Listing 9 shows the code for

this example.

Listing 9.

public void
 removeCustomerByGallons(double gallons) {
 CriteriaBuilder builder =
 em.getCriteriaBuilder();
 CriteriaDelete<Customer> customerDelete =
 builder.createCriteriaDelete(Customer.class);
 Root<Customer> customer =
 customerDelete.from(Customer.class);

 Join<Customer, Pool> poolCustomers =
 customer.join(Customer_.pool);

 customerDelete
 .where(builder.gt(
 poolCustomers.get(Pool_.gallons),
 gallons));
 Query q = em.createQuery(customerDelete);
 q.executeUpdate();
 em.flush();
}

Diving Deeper into the Criteria API

In the world of databases and SQL, there are several other

operations and query options that can be used to produce the

desired result. One example is the use of aggregate functions

for performing calculations on data, and another example

is fetching only distinct values. Moreover, SQL queries can

include subqueries to be used for iltering results. All of these
options are also available in the Criteria API.

Most of the aggregate functions can be performed by call-

ing the CriteriaBuilder object, whereas ordering and

grouping functionality can be done with a CriteriaQuery

object. Such operations can be addressed using the same

builder pattern that I’ve used throughout the examples in

this article.

Because subqueries use a somewhat diferent syntax, let’s
take a look at a quick example. Suppose that we want to query

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

53

//enterprise java /

all Acme Pools customers that contain a discount code, where

the discount rate is higher than a speciied amount. A stan-

dard SQL query for this situation might look as follows:

select *
from customer
where discount_code in
 (select discount_code
 from discount_code where rate > 7.00);

Now let’s use the Criteria API to construct this same sub-

query. The Subquery object comes into play when working

with subqueries. Much of the query is written in the same

manner as others we’ve seen, but in this case, two separate

queries are written and then combined to produce the result.

Listing 10 demonstrates how to perform a subquery.

Listing 10.

CriteriaBuilder criteriaBuilder =
 em.getCriteriaBuilder();
CriteriaQuery<Customer> criteriaQuery =
 criteriaBuilder.createQuery(Customer.class);
Root<Customer> from =
 criteriaQuery.from(Customer.class);

CriteriaQuery<Customer> select =
 criteriaQuery.select(from);

Subquery<DiscountCode> subquery =
 criteriaQuery.subquery(DiscountCode.class);
Root fromDiscountCode =
 subquery.from(DiscountCode.class);

subquery.select(fromDiscountCode.get(
 DiscountCode_.discountCode))
 .where(criteriaBuilder.gt(
 fromDiscountCode.get(DiscountCode_.rate),
 7000));
select.where(criteriaBuilder.in(

 from.get(Customer_.discountCode))
 .value(subquery));

TypedQuery<Customer> typedQuery =
 em.createQuery(select);
return typedQuery.getResultList();

Conclusion

The Java Persistence API is the foundation for performing
database operations within a standard Java EE 7 applica-

tion. Although there are a variety of ways to work with data,

the Criteria API is the only one that allows the construc-

tion of type-safe queries, eliminating many of the runtime

errors that occur from incorrect String queries. The API can
be used to build complex queries and perform bulk opera-

tions, the latter of which are new features in the latest release

of JPA. </article>

Josh Juneau works as an application developer, system ana-
lyst, and database administrator. He authored Java EE 7 Recipes,
Introducing Java EE 7, and JavaServer Faces: Introduction by
Example (all from Apress). He also produced a video course entitled
Mastering PrimeFaces (Packt Publishing, 2015).

The complete source code on GitHub for the

AcmePools application

Java EE 7 tutorial

CriteriaQuery documentation

CriteriaBuilder documentation

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/juneau001/AcmePools-JPA
http://docs.oracle.com/javaee/7/tutorial/
https://docs.oracle.com/javaee/7/api/javax/persistence/criteria/CriteriaQuery.html
http://docs.oracle.com/javaee/7/api/javax/persistence/criteria/CriteriaBuilder.html

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

54

//jvm languages /

I started writing what would become the Golo programming

language in the summer of 2012. I was working on dynamic

software modiications with my research colleagues, and we
had proposed a JVM agent called JooFlux to inject changes

and aspects into Java programs on the ly. It was based on
JSR 292 (support for dynamic languages on the JVM) and the

invokedynamic bytecode instruction. I ended up experiment-

ing a lot with this bytecode trying to facilitate the design of

dynamically typed languages on top of the JVM.

As I studied existing JVM languages that lacked invoke

dynamic, I thought it would be a good idea to create a lan-

guage that has simple and easy-to-understand compiler and

runtime codebases to enable experimenting with language

advances, such as new bytecodes. Fast-forward a few years
and Golo is now an incubating Eclipse Technology project

where hobbyists who have no prior language development

experience contribute to its development, and research deriv-

atives have been based on it.

This article provides a tour of some of the features of the

Golo programming language. It does not cover all the fea-

tures, yet it should give you a good start.

A Verbose Start

Golo is a dynamically typed language. It supports imperative

and functional idioms, and it integrates nicely with Java. To
illustrate that, let me start with a simple program that cre-

ates a java.util.ArrayList from the Java standard APIs,
and then iterates over the elements to print them. The con-

structions are deliberately close to what you would write in

Java, but I will soon show how to make them more concise.

module javamag.Hello

import java.util

A comment
function main = |args| {
 let elements = ArrayList()
 elements: add("Hello")
 elements: add("world")
 elements: add("!")
 let size = elements: size()
 for(var i = 0, i < size, i = i + 1) {
 print(elements: get(i))
 if (i < size - 1) {
 print(" ")
 }
 }
 println("")
}

The code above demonstrates a few things:
■■ The code is a module, which is the compilation unit in Golo.
■■ import statements help resolve symbols.
■■ Function parameters are passed between pipe symbols (|).
■■ There is no new operator for creating instances of Java

classes; instead, the constructors are called as functions.
■■ let deines constant references, and var deines variable

references.
■■ Instance methods are called using the : operator, as in

JULIEN PONGE

PHOTOGRAPH BY
MATT BOSTOCK/GETTY IMAGES

Golo
A fast, low-ceremony, easy-to-learn language for the JVM

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://golo-lang.org/

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

55

//jvm languages /

elements: size(), which calls the size method on the

elements object. (The space after the colon is idiomatic,
not mandatory.)

■■ Comment lines start with a # symbol.
■■ A Golo module can provide a main function as an entry

point, which takes exactly one argument that is expected to
be an array of command-line arguments, just like the main

method in Java.

It is important to note that import statements are purely

symbolic and are not checked at compile time. Had

import java been used instead of import java.util,
the code would have called the ArrayList constructor as

util.ArrayList().

Golo provides a unique golo command-line tool. It also

provides several subcommands, including compile, run, and
golo. Compiling and then running the above program is as

simple as the following:

$ golo compile hello-1.golo
$ ls javamag/
Hello.class
$ golo run --classpath . --module javamag.Hello
Hello world !
$

The golo subcommand compiles source code in memory,
rather than to iles, and then executes a module, which is by
default the last .golo ile:

$ golo golo --files hello.golo
Hello world !
$

Reducing Verbosity

Golo provides collection literals for creating lists, arrays,
vectors, tuples, maps, sets, and ranges:

[1, 2, 3]
list[1, 2, 3]
map[[1, "a"], [2, "b"]]
[1..10_000]
...

These options allow me to revisit the previous example and

introduce a foreach loop:

let elements = vector["Hello", "world", "!"]
foreach e in elements {
 print(e + " ")
}
println("")

Note that the foreach loop supports conditional guards with a

when clause. The following example uses a range (the double

dots) and prints only the odd numbers:

let ints = [1..100]
foreach i in ints {
 if i % 2 == 0 {
 println(i)
 }
}

The previous example can be rewritten using when:

let ints = [1..100]
foreach i in ints when i % 2 == 0 {
 println(i)
}

Golo provides collection comprehensions for all collection liter-

als. This feature is reminiscent of the Python programming

language, and here is a simple example:

let odds = [i foreach i in [1..100] when i % 2 == 0]
println(odds)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

56

//jvm languages /

The previous code deines a tuple of the odd integer numbers
between 1 and 100. As you can see, embedding a foreach

clause that may also contain a when guard does this.

There can also be several foreach clauses, as the next
example shows. It generates a collection of pairs of integers,
expressed as a tuple of tuples:

let pairs = [[i * 2, j * 3]
 foreach i in odds when (i >= 30) and (i <= 50)
 foreach j in [10..20] when j % 2 == 1]
println(pairs)

Golo also supports destructuring of its data types and

collections:

let l = list["1", "2", "3", "4"]
let a, b = l
let head, second, tail... = l

let m = map[["a", 123], ["b", 456]]
foreach key, value in m: entrySet() {
 # ...
}

In the two examples above, a would be value "1", and b would

be value "2". Similarly head, second, and tail would be,
respectively, "1", "2", and list["3", "4"]. Destructuring

is also useful when dealing with map entries and decomposes

them as pairs of keys and values (a Golo map[...] literal

yields a java.util.HashMap).

Higher-Order Functions

Like most recent programming languages, Golo supports
higher-order functions. This means that functions can accept

functions as parameters and return functions.

Given a function declared in a module, you can obtain a
reference to it using the ^ operator. Once a reference has been

assigned to a function value, calls can be made to it, as in the
following example:

module Foo

function hello = {
 println("Hello!")
}

function main = |args| {
 let f = ^hello
 f() # prints "Hello!"
}

Of course, direct function declarations can be made, as in
the following:

let f = |str| {
 println(">>> " + str)
}
f("Hello!") # prints ">>> Hello!"

Also, functions that consist of a single expression can be
expressed using the shorthand -> notation:

let f = |str| -> println(">>> " + str)
f("Hello!") # prints ">>> Hello!"

Function references have methods that allow them to be

manipulated, mainly to perform operations such as partial
application and composition. The provided methods closely

mimic those of the java.lang.invoke package APIs. Let’s

look at the following example:

let add = |a, b, c| -> a + b + c
let times = |a, b| -> a * b

let add_1_and_2 = add: insertArguments(0, 1, 2)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

57

//jvm languages /

let twice = times: bindTo(2)
let f = add_1_and_2:
 andThen(twice):
 andThen(|n| -> println(n))

prints "12"
f(3)

Now let’s step through the code. add_1_and_2 is the result

of doing a partial application of the arguments of add start-

ing at position 0, which means that a and b get ixed to 1

and 2. The resulting function takes a single argument, which
is then passed as the argument c of the original add func-

tion. bindTo also performs partial application, except that
it applies to a single value on the irst parameter. andThen

composes functions; here f irst adds 1 and 2 to the single

argument, then passes the result to twice, and then passes it
to the anonymous function that prints the result.

Another interesting feature of Golo functions is that they

support named arguments:

function startServer(address, port, options) {
 # (...)
}

function run = {
 # (...)
 startServer(
 port=8080,
 options=list["--watch", "--verbose"],
 address="0.0.0.0")
}

Named arguments are useful for clarifying the purpose of

the parameters while using certain APIs. They also allow the

order of the parameters to be diferent from that of the func-

tion declaration. All Golo functions, including anonymous
functions, allow invocations with named arguments.

It is also worth noting that Golo can use named argu-

ments on Java class methods. There is one limitation,
though: classes need to have been compiled with the

javac -parameters lag activated, which is, sadly, not
the case by default.

Golo Functions and Java Functional Interfaces

Although lambdas were added only in Java 8, the language
and platform have long relied on single-method interfaces.

Typical examples include passing a Runnable instance to

a Thread constructor or passing an ActionListener to a

Swing component.

To explore a concrete example, let’s use the java.util
.concurrent.CompletableFuture class that was added

in Java 8:

module SmiAndLambda

import java.util.concurrent.CompletableFuture

function main = |args| {
 supplyAsync(-> 1):
 thenApply(|n| -> n + 99):
 thenAcceptAsync(|n| -> println(">>> " + n)):
 join()
}

The code above creates a CompletableFuture by asynchro-

nously executing a irst function that does nothing inter-

esting but returns 1. It then applies another function that

increments the result of the irst call by 99, and then asyn-

chronously executes another function that prints out the

result (>>> 1000).

The supplyAsync method from CompletableFuture

accepts a java.util.function.Supplier, which is a
single-method interface. The thenApply method expects

a java.util.function.Function, which is a functional

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

58

//jvm languages /

interface (that is, it has a single abstract method in conjunc-

tion with default methods). Similarly, thenAcceptAsync

expects a java.util.function.Consumer, which is also a
functional interface.

The Golo runtime automatically adapts function references

to both Java single-method and functional interfaces.

Structures

Golo provides structured data deinitions using the struct

declaration, as in the following:

struct Message = { id, date, payload }

A structure object has a constructor, getter and setter acces-

sors, as well as sensible equals(), hashCode(), and
toString() methods. Here is a sample usage of the Message

structure deinition above:

let m = Message(
 id=12345,
 date="2016-01-22 15:41 CEST",
 payload="""I hope this message finds you well.

Yours sincerely,

- Julien""")

println(m)
m: id(6789)
println(m: id())

The code above would print:

struct Message{id=12345, date=2016-01-22 15:41 CEST,
payload=I hope this message finds you well.

Yours sincerely,

- Julien}
6789

Note that """ deines multiline strings in Golo.
Immutable copies of a struct object can be made by calling

the frozenCopy() method. Every structure also comes with

a constructor for making immutable objects: the name of the

constructor function is preixed by Immutable. In the previ-

ous example, we could have constructed m as immutable by

calling ImmutableMessage rather than Message. This would

also cause the m: id(6789) call to fail because m would

be immutable.

Structure ields have public visibility by default. Given a
module importing the module that deined the Message

structure above, the module would have access to all
ields through their accessors (for example, id() and

id(newValue)). It is possible to restrict visibility by preixing
ields with an underscore. Any such ield is visible only from
within its deining module code, and remains hidden from
other modules.

Finally, structure objects can be destructured and enumer-

ated. This makes it possible to write the following:

let id, date, payload = m
println(id)
println(date)
println(payload)

foreach field, value in m {
 println(field + " -> " + value)
}

Tagged Unions

As a complement to structure types, Golo supports tagged
unions, sometimes also called sum algebraic data types. Here is

an example deining a Figure type:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

59

//jvm languages /

union Figure = {
 Nothing
 Square = { sideLength }
 Rectangle = { firstSideLength, secondSideLength }
 Circle = { radius }
}

With this deinition, a Figure can be of the Nothing,
Square, Rectangle, or Circle concrete type. Each type can

have (immutable) ields and a constructor. Here is the cre-

ation of a tuple with several Figure instances:

let figures = [
 Figure.Square(23),
 Figure.Rectangle(firstSideLength=10,
 secondSideLength=20),
 Figure.Circle(30),
 Figure.Nothing()
]

Given each concrete type of Figure, methods are being
provided to check whether an instance is of a given type:

f: isSquare(), f: isCircle(), and so on. The following
example illustrates how to use these methods. It also intro-

duces the match operator that iteratively evaluates several

conditions with when/then/otherwise clauses and returns

a value:

println(figures: map(|f| -> match {
 when f: isRectangle()
 then
 "[" +
 f: firstSideLength() +
 ", " +
 f: secondSideLength() +
 "]"
 when f: isSquare()
 then "[" +
 f: sideLength() + "]"

 when f: isCircle()
 then "(" +
 f: radius() + ")"
 otherwise "."
}): join("\n"))

Golo collections provide functional idioms such as map (to

create a new collection by applying a function to its ele-

ments) and join (to produce a string by concatenating ele-

ments with a separator). Running the code above prints the

following text:

[23]
[10, 20]
(30)
.

It is also possible to test instances not just for their type, but
also for values:

false
println(Figure.Square(23): isSquare(20))

true
println(Figure.Square(23): isSquare(23))

Because we might be interested in only a subset of a union

of type ields, we can use the special Unknown.get() value

to indicate that the value of certain ields is not useful
for matching:

let figs = [
 Figure.Rectangle(10, 10),
 Figure.Rectangle(10, 30),
 Figure.Rectangle(30, 30),
 Figure.Circle(20)
]
let _ = Unknown.get()

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

60

//jvm languages /

println(figs: filter(|f| -> match {
 when f: isRectangle(10, _)
 then true
 otherwise
 false
}): join("\n"))

Starting with the figs collection, we can use filter to dis-

card the igures that are not rectangles whose irst side has a
value of 10, and then print the result:

union Figure.Rectangle{firstSideLength=10,
 secondSideLength=10}
union Figure.Rectangle{firstSideLength=10,
 secondSideLength=30}

Augmentations

Golo does not provide constructions for deining classes,
but it provides a way to add methods to any type that it can

manipulate. This includes class deinitions from Java APIs
and also Golo struct and union types. An augmentation

deines a set of functions that can be called as methods. The
convention for these functions is to call this as the irst
parameter because it references the receiver object, but you
are free to use a diferent name.

Augmentations can be deined by specifying a type:

augment java.lang.String {

 function wrap = |this, s1, s2| ->
 s1 + this + s2

 # (... more methods can be added)
}

The code above adds a wrap method to Java String instances.

For example, the following code would give "{abc}".

"abc": wrap("{", "}")

An augmentation applies to a type and all its subtypes; an

augmentation on java.lang.Object would apply to every

type. An augmentation is visible from its deining module
and the modules that import this module.

The other way to deine an augmentation is by name rather
than by a target type:

augmentation Wrap = {
 function wrap = |this, s1, s2| ->
 s1 + this: pretty() + s2
}

augmentation PrettyContact = {
 function pretty = |this| ->
 this: name() + " <" +
 this: email() + ">"
}

With these two named augmentation deinitions, we can
compose and then augment the following struct type:

struct Contact = { name, email }

augment Contact with Wrap, PrettyContact

We can then use the augmented type as follows:

let dan = Contact("Dan", "dan@tld")
println(dan: pretty())
println(dan: wrap("/* ", " */"))

The code above prints:

Dan <dan@tld>
/* Dan <dan@tld> */

The advantage of named augmentations over augmentations

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

61

//jvm languages /

on types is that you avoid code duplication when augmenting

several, possibly unrelated, types.

Generating Adapter Classes

While Golo has few issues when calling Java APIs, there are
cases when these APIs expect arguments to be objects that

extend certain interfaces or base classes. Golo provides an

API to generate adapter classes. An adapter class extends a

base class, implements a set of interfaces, and overrides and
implements methods.

The Adapter API is available through the gololang

.Adapters import statement, and then it can be used to
create objects such as the following one:

let obj = Adapter():
 extends("java.lang.Object"):
 interfaces([
 "java.io.Serializable",
 "java.util.Enumeration"]):
 implements("hasMoreElements",
 |this| -> true):
 implements("nextElement",
 |this| -> 100):
 overrides("toString",
 |this, super| -> "Strange!"):
 newInstance()

println(obj: getClass())
println(obj: getClass():
 getInterfaces():
 toString())
println(obj: hasMoreElements())
println(obj: nextElement())
println(obj: toString())

Executing the code above prints:

class $Golo$Adapter$0

[interface gololang.GoloAdapter,
 interface java.io.Serializable,
 interface java.util.Enumeration]
true
100
Strange!

The API performs soundness veriications (for example, it
checks that all interface methods are being implemented)

and dynamically generates the adapter class as JVM bytecode.

Instead of method names, it is also possible to use * so that
a single function can implement many methods or override

all methods. The Golo documentation has examples of using

adapters for dynamically generating proxies.

Calling Golo from Java

Calling Golo from Java is usually very easy. There are two

options: direct invocations and code evaluations.

Direct invocations. The irst option is to compile Golo source
iles, and add the generated bytecode plus the Golo runtime
JAR ile and dependencies to the Java application classpath.
From the point of view of a Java class, a Golo module is a class
with static methods. Given the following module:

module my.great.Module

struct Point = {x, y}

function a = |n| -> n + 1
function b = |a, b| -> a * b

The javap decompiler reveals the following public methods:

$ javap my.great.Module
Compiled from "compil.golo"
public class my.great.Module {
 public static java.lang.String[] $imports();
 public static java.lang.String[] $augmentations();

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

62

//jvm languages /

 public static java.lang.String[]
 $augmentationApplications();
 public static java.lang.String[]
 $augmentationApplications(int);
 public static java.lang.Object
 a(java.lang.Object);
 public static java.lang.Object
 b(java.lang.Object, java.lang.Object);
 public static java.lang.Object Point();
 public static java.lang.Object
 Point(java.lang.Object, java.lang.Object);
 public static java.lang.Object
 ImmutablePoint(java.lang.Object,
 java.lang.Object);
}

[Indented lines are wrapped from the previous line. —Ed.]

Methods such as a or Point can be called “as is” from Java.

The methods preixed with $ are used by the Golo runtime.

Code evaluation. Another option is to use the gololang

.EvaluationEnvironment class that is part of the Golo run-

time. It provides various means to pass Golo code as strings,
and either evaluate or execute them.

Here is an example usage of that class from Java:

package sample;

import gololang.EvaluationEnvironment;
import gololang.FunctionReference;

public class GoloFromJava {

 public static void main(String[] args)
 throws Throwable {
 EvaluationEnvironment env =
 new EvaluationEnvironment();

 FunctionReference f1 =
 (FunctionReference) env.def(

 "|a, b| -> println(a + \" ~ \" + b)");
 f1.invoke("hello", "world");

 FunctionReference f2 = (FunctionReference)
 env.asFunction("println(a + b)", "a", "b");
 f2.invoke(5, 10);
 }
}

The code above prints the following:

hello ~ world
15

The EvaluationEnvironment class provides additional

methods for evaluating Golo code, such as evaluating the whole
module source code from text, deining imports, and more.

Conclusion

This article introduced some interesting features of the Golo

programming language. There is, of course, more to the lan-

guage, and I encourage you to go further by experimenting
with it. If you have always wondered how programming lan-

guages could be implemented, you might also enjoy looking at
the source code: I generally do my best to ensure that it pro-

vides signiicant pedagogical value.
Last but not least, Golo is a language that is friendly to hob-

byists. Do not hesitate to propose contributions! </article>

Julien Ponge (@jponge) is a longtime open source contributor
who is currently an associate professor of computer science and
engineering at INSA de Lyon, France. He focuses his research on
programming languages, virtual machines, and middleware.

The author would like to thank the contributors of Golo, and
especially Yannick Loiseau, Sylvain Desgrais, Daniel Petisme, and
Philippe Charrière, who influenced the design and implementation

of some language features.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

63

//fix this /

I
hope you like the new format of these quizzes with

longer and deeper explanations of the answers. Here are

some more questions that simulate those from the 1Z0-809

Programmer II exam.

Question 1. Given this code:
public enum Suit { // line n1
 HEART, DIAMOND, SPADE, CLUB; // line n2
 private Color color; // line n3
 public final Suit(Color color) { // line n4
 this.color = color;
 }
}

Which two changes are necessary to enable the code to compile?

Choose two.

a. Remove the keyword public from line n4.

b. Remove both the keywords public and final from line n4.

c. Remove the keyword public from line n1.

d. Change line n2 to this:
HEART(Color.RED), DIAMOND(Color.RED),
 SPADE(Color.BLACK), CLUB(Color.BLACK);

e. Change line n2 to this:
new HEART(Color.RED), new DIAMOND(Color.RED),
 new SPADE(Color.BLACK), new CLUB(Color.BLACK);

Question 2. You are creating a method that performs I/O

operations that might throw an IOException. The I/O code is

omitted from the fragments below, but it is assumed to occur

at the location marked // ...

The FileReader constructor is declared as throws

Quiz Yourself
More questions from an author of the Java certification tests

FileNotFoundException. The FileNotFound

Exception is a subclass of IOException. The code should

respond to either exception by logging the exception and

then rethrowing it to the caller.

Which code satisfies the requirements?

a.
try (BufferedReader br =
 new BufferedReader(new FileReader(fName));) {
 // ...
} catch (IOException e) {
 LOG.warning(()->e.getLocalizedMessage());
 throw e;
} catch (FileNotFoundException e) {
 LOG.warning(()->e.getLocalizedMessage());
 throw e;
}

b.
try (BufferedReader br =
 new BufferedReader(new FileReader(fName));) {
 // ...
} catch (FileNotFoundException e) {
 LOG.warning(()->e.getLocalizedMessage());
 throw e;
} catch (IOException e) {
 LOG.warning(()->e.getLocalizedMessage());
 throw e;
} finally {
 br.close();
}

c.
try (BufferedReader br =
 new BufferedReader(new FileReader(fName));) {

SIMON ROBERTS

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

64

//ix this /

 // ...
} catch (IOException e) {
 LOG.warning(()->e.getLocalizedMessage());
 throw e;
}

d.
try (BufferedReader br =
 new BufferedReader(new FileReader(fName));) {
 // ...
} catch (IOException | FileNotFoundException e) {
 LOG.warning(()->e.getLocalizedMessage());
 throw e;
}

e.
try (BufferedReader br =
 new BufferedReader(new FileReader(fName));) {
 // ...
} catch (IOException | FileNotFoundException e) {
 LOG.warning(()->e.getLocalizedMessage());
 throw e;
} finally {
 br.close();
}

Question 3.Assume that the class Fruit is accessible

and deines a JavaBeans-style accessor method with the
following prototype:
public String getColor()

Given that sf is a nonempty Stream<Fruit> and given this

code fragment:
System.out.println(
 // line n1
 .filter("yellow"::equalsIgnoreCase)
 .count());

Which of the following, when inserted at line n1, causes the frag-

ment to output the total number of yellow fruits in the stream?

a. sf.filter(f->f.getColor()
 .equalsIgnoreCase("yellow"))

b. sf.flatMap(f->f.getColor())
c. sf.reduce(f->f.getColor())
d. sf.map(Fruit::getColor)

e. None of these

Question 1. The correct answers are Options B and D. A sig-

niicant part of the purpose of an enumerated type is to
ensure that a speciic set of instances, deined at compilation
time, exists while the program is running. The only reason to

provide access to a constructor is to allow the creation of new

instances. Because new instances of an enum would break the
expectations of the enum, there’s no reason to allow access

to the constructors. Consequently, as one of several measures

to prevent such inconsistency, enum constructors must be

private. A default constructor for an enum always will be

private, and any constructor that lacks an explicit accessi-

bility keyword will also be private. If an access control key-

word is provided, it must be private.

Section 8.9 of the Java Language Speciication states, “An

enum type has no instances other than those deined by
its enum constants. It is a compile-time error to attempt to

explicitly instantiate an enum type.” Section 8.9.2 notes,

“In an enum declaration, a constructor declaration with no

access modiiers is private.” Finally, section 8.9.3 says, “It is

a compile-time error if a constructor declaration in an enum

declaration is public or protected.”

Answers

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.9
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.9.2
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.9.3

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

65

//ix this /

Given this, it’s clear that the public modiier must be
removed from the constructor. However, while this is neces-

sary, it is not suicient. Let’s see why. In general, construc-

tors may not be final (they are not inherited, so it makes no

sense to use this modiier).
Section 8.8.3 states, “Unlike methods, a constructor can-

not be abstract, static, final, native, strictfp, or

synchronized.”

So, this tells you that it’s necessary to remove both the

public and final keywords from the constructor. The only

option that provides for this requirement is Option B, so this
must be part of the correct answer. This solution also elimi-

nates Option A.

Option C calls for removing the public keyword from the

enum class as a whole. This is unnecessary; it’s perfectly cor-

rect to have a public enum.

Section 8.1.1 mentions that the class modiiers of a normal
class may include public. Later, section 8.9 modiies the
information to be speciic to enums. It prohibits abstract

and final, but it does not prohibit the others, ensuring

that public is acceptable. Because of this, Option C must
be incorrect.

Lastly, when an explicit constructor is deined for any class,
the default constructor is not generated by the compiler

(section 8.8.9). Because of this, line n2, as shown in the origi-
nal, will not compile. This is because the format it uses has

no parentheses and no argument lists; therefore, it attempts,

unsuccessfully, to invoke that missing default constructor.

Section 8.9.1 notes that when an argument list is provided,

these arguments are “passed to the constructor of the enum.”

It also notes that normal overload-matching rules will be

applied. Because of this and the format speciied in this same
section, the proper format for the invocation is as shown in

Option E. The form in Option E that uses a new keyword is a

syntax error. Because of this, Option D is the second correct
option, and Option E is wrong.

Note for certification exam students: You might wonder

how an item can be correct when it refers to Color.RED and

Color.BLACK in the argument to the constructor, but it does

not deine or import any Color class.

In the interest of keeping the amount of code you have to

examine within reasonable limits, Oracle has documented

some assumptions that should be made when consider-

ing a question. These are listed on the exam information

pages. In particular, the following assumptions are men-

tioned explicitly. “Missing package and import statements:

If sample code does not include package or import state-

ments, and the question does not explicitly refer to these

missing statements, then assume that all sample code is in

the same package, and import statements exist to support

them.” Given this, it’s clear that it’s proper to assume that

some class Color exists, and it provides for these constants.

If you’re unfamiliar with it, this is probably the original

java.awt.Color class, but such detail isn’t important here.

Most of the notes that Oracle has provided might be consid-

ered obvious. That is, if you didn’t make these assumptions,

many questions would have no plausible answer. However, it’s

nice that they’re now called out explicitly, so you don’t have to

worry if you’re making an unreasonable assumption. You can

ind these notes on the pages of each relevant exam, usually
by selecting the Exam Topics tab that’s about halfway down.

Question 2. The correct answer is Option C. FileNotFound

Exception is a subclass of IOException. Where exceptions

in a class hierarchy are both being caught explicitly—such

as in Option A—the more-speciic exception must be posi-
tioned earlier in the list than the more-general exception.

This ordering rule exists because execution will jump to the

irst catch block that is applicable (section 14.20.1 of the

Java Language Speciication), and if the more-general were
irst, the more-speciic would never be executed. In Option
A, this rule is broken; hence, the code fails to compile and

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.8.3
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.1.1
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.9
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.8.9
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.9.1
https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html#jls-14.20.1

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

66

//ix this /

is, therefore, incorrect.

It’s perhaps interesting to note that in earlier versions of

Java, that’s exactly what happened, leading to some poten-

tially hard-to-ind bugs. Today, section 14.21 identiies such
a situation as unreachable code and requires the compilation

error that we’re used to now.

In Option B, the ordering of the catch blocks has been

corrected; however, an explicit finally block has also been

added. It’s OK to have a finally block, but the scope of the

resource variable br (the BufferedReader) is limited to the
parentheses following the try statement and the block that

follows it. Consequently, the attempt to explicitly close br in

the finally block fails to compile. Of course, the whole point

of the try-with-resources structure is to close the resources

implicitly, so attempting to close br explicitly like this is

misguided, too.

Option C works just ine, and turns out to be the correct
answer. Because the FileNotFoundException is a subclass

of IOException, they’ll both be caught in the single catch

block provided, and they will be treated as the speciication
demands. It’s perhaps worth discussing that if I wanted dif-

ferent handling for these two exceptions, or if I wanted the

same handling for two exceptions that did not share a parent/

child relationship, this wouldn’t be a good solution. But that’s
not the situation in this question.

Option D might look tempting, using the newer (Java 7)
multi-catch syntax. However, it fails because the two excep-

tions share a parent/child relationship. This code actually

creates a compilation error. Section 14.20 notes, “It is a

compile-time error if a union of types contains two alter-

natives Di and Dj (i ≠ j) where Di is a subtype of Dj.”

That’s a bit of a mouthful, but in essence it simply excludes

using the multi-catch syntax with exception types, such as

IOException and FileNotFoundException, that have an

inheritance relationship.

Option E fails for the same reasons as both Options D and B.

A couple of side notes: First, I think a good case could be

made that the exam might not explicitly tell you about the

inheritance relationship between these two exceptions, given

how common they are, and how many other objectives hint at

knowing this kind of detail.

Second, you’ll notice that there’s a lot of code in this exam-

ple. While questions of this size are not common, you will

sometimes come across them. It’s not a bad skill to practice

keeping a clear head and making an organized search to look

for particular points. After all, production code isn’t always

written and maintained in the best conventions of clean

code either!

Question 3. The correct answer is Option D. For this fragment
to output the number of occurrences of yellow fruits, the

stream that feeds into the count method (which is itself the

output of the filter method) must contain one element for
each yellow fruit in the original stream. It doesn’t particularly

matter what that element is, of course.

The filter method that is already in place will pass

through only those elements which are strings that match

(ignoring case) the text "yellow". This means that the

stream that enters the filter method must contain only

the color names of the original Fruit objects, not the Fruit

objects themselves.

The method in the Stream interface that allows you to

convert the contents of a stream—either the values or the

data type—while maintaining a one-to-one correspondence

between input and output items is map. Option D does this,
and is correctly formed, using a method reference to the

getColor method to take a Fruit object from the input

stream and extract the color name. That, as was just dis-

cussed, is what’s needed for this code to behave as required.

So, Option D is correct.
Option A would work if it replaced the existing filter

statement. This statement would result in the yellow Fruit

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html#jls-14.21
https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html#jls-14.20

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

67

//ix this /

objects proceeding down the stream. If counted directly, we’d

get the desired result, but, as the code stands, the down-

stream ilter would fail to compile because it’s receiving
whole Fruit objects, rather than color names.

Option B would not compile, because the return type of
the behavior provided as the argument to flatMap must be

a stream of some kind. It’s interesting to note, however, that

if the option had been sf.flatMap(f->Stream.of(

f.getColor())), then—although horribly ineicient and
cumbersome—it would have worked correctly.

Option C also fails to compile and is essentially nonsense.

The reduce method of Stream is a terminal operation that

collects all the values coming down the stream and produces

a single output value. The behavior argument to the reduce

method performs the computations that create that single

output value. Clearly, that’s not what’s needed here anyway.

Further, the behavior argument to the single-argument

reduce method is a BinaryOperator, and the lambda f->

f.getColor() is efectively a Function<Fruit, String>

and is, therefore, incompatible. </article>

Simon Roberts joined Sun Microsystems in time to teach Sun’s
irst Java classes in the UK. He created the Sun Certiied Java
Programmer and Sun Certiied Java Developer exams. He wrote
several Java certiication guides and is currently a freelance edu-
cator who teaches at many large companies in Silicon Valley and
around the world. He remains involved with Oracle’s Java certiica-
tion projects.

Understanding enums

Oracle Java tutorial on FileReader

Oracle Java tutorial on Streams and aggregate operations

learn more

Because this issue focuses on what’s inside Java, let’s look
at how Java renders user interface elements on Linux. At
the moment, the Linux version of the JRE depends in part
on the GIMP Toolkit (GTK+), a portable UI library written
in C. However, Java depends on GTK+ 2, a rather old ver-

sion of the library. JEP 283 proposes migration to GTK+ 3.

The beneit is that GTK+ 3 is the development branch (and
GTK+ 2 is no longer active). Another driver for this change
is a problem that could potentially arise, namely lack

of future support for GTK+ 2 in Linux distros. Currently,
most versions of Linux ship with both GTK+ 2 and 3.
However, because version 3 was launched in 2011, it’s not

clear how long the various distros will keep bundling

GTK+ 2. This enhancement proposal, therefore, explores

how support for version 3 could begin to be brought

into AWT/Swing, JavaFX, and potentially SWT. The JDK
Enhancement Proposal (JEP) document is particularly
interesting, because it presents a good overview of how

much work has to be done to make a comparatively small

change to a single component on a single platform. It

explains the beneits and drawbacks well, and it lays out
various transitional paths.

An earlier proposal, JEP 263, pointed to the beneits
of GTK+ 3 as a library to use for better support of high-

resolution displays.

If you’re interested in this topic and have expertise in

the matter, the Expert Committees welcome your input.

JEP 283 and JEP 263:
Migrating to GTK+ 3 on Linux

FEATURED JDK ENHANCEMENT PROPOSAL

//java proposals of interest /

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/tutorial/essential/io/charstreams.html
https://docs.oracle.com/javase/tutorial/collections/streams/index.html
http://www.gtk.org/
http://openjdk.java.net/jeps/283
http://openjdk.java.net/jeps/263

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

68

//contact us /

Comments
We welcome your comments, correc-

tions, opinions on topics we’ve covered,

and any other thoughts you feel impor-

tant to share with us or our readers.

Unless you speciically tell us that your

correspondence is private, we reserve

the right to publish it in our Letters to

the Editor section.

Article Proposals
We welcome article proposals on all

topics regarding Java and other JVM

languages, as well as the JVM itself.

We also are interested in proposals for

articles on Java utilities (either open

source or those bundled with the JDK).

Finally, algorithms, unusual but useful

programming techniques, and most other

topics that hard-core Java programmers

would enjoy are of great interest to us,

too. Please contact us with your ideas

at javamag_us@oracle.com and we’ll

give you our thoughts on the topic and

send you our nifty writer guidelines,

which will give you more information

on preparing an article.

Customer Service
If you’re having trouble with your

subscription, please contact the

folks at java@halldata.com (phone

+1.847.763.9635), who will do

whatever they can to help.

Where?
Comments and article proposals should

be sent to our editor, Andrew Binstock,

at javamag_us@oracle.com.

While it will have no inluence on

our decision whether to publish your

article or letter, cookies and edible treats

will be gratefully accepted by our staf

at Java Magazine, Oracle Corporation,

500 Oracle Parkway, MS OPL 3A,

Redwood Shores, CA 94065, USA.

 Download area for code and
other items

 Java Magazine in Japanese

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
mailto:java%40halldata.com?subject=
mailto:javamag_us%40oracle.com?subject=
https://bitbucket.org/javamagazine/magdownloads/wiki/Home
http://www.oracle.com/technetwork/jp/articles/java/overview/index.html

	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

