
MAY/JUNE 2016

JUNIT 5 PREVIEW 38 | GENERICS IN DEPTH 45 | CEYLON LANGUAGE 50

 FROM

 BIG DATA
TO INSIGHTS

ORACLE.COM/JAVAMAGAZINE

100 GB OF DATA
IN MEMORY
BUT OFF HEAP

26
SPARK FOR
PERSONAL
PROJECTS

20
APACHE SPARK:
GETTING
STARTED

14

http://www.oracle.com/javamagazine

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

01

//table of contents /

COVER ART BY WES ROWELL

04
From the Editor
With more companies leaving the busi-

ness and the survivors in an intense price

war, is the model of free open source

hosting sustainable?

06
Letters to the Editor
Comments, questions, suggestions,

and kudos

09
Events
Upcoming Java conferences and events

11
Java Books
Review of Java Testing with Spock

38
Testing

JUnit 5: A First Look
By Mert Çalişkan
The long-awaited release of

JUnit 5 is a complete redesign

with many useful additions.

45
New to Java

Understanding Generics
By Michael Kölling
Use generics to increase

type safety and readability.

50
JVM Languages

Ceylon Language:
Say More, More Clearly
By Stéphane Épardaud
A low-ceremony, high-productivity

JVM language that integrates

easily with Java and also runs

on JavaScript VMs

56
Fix This
By Simon Roberts
Our latest code challenges

61
Cloud

Getting Onboard Oracle
Java Cloud Service
By Harshad Oak
A hands-on, step-by-step guide

to trying out an enterprise cloud

37
User Groups
Barcelona JUG

66
Contact Us
Have a comment? Suggestion?

Want to submit an article

proposal? Here’s how.

14
APACHE SPARK 101
By Diana Carroll

Getting up to speed on the popular big data engine

20
USING SPARK
AND BIG DATA FOR
HOME PROJECTS
By Nic Raboy

Create a small personal

project using big data

pipelines.

26
BUILDING A
MASSIVE OFF-HEAP
DATA QUEUE
By Peter Lawrey

How one company built

a data queue that scales

to more than 100 GB

30
BIG DATA BEST
PRACTICES FOR
JDBC AND JPA
By Josh Juneau

Focus on the fundamentals

so you’re not overwhelmed

by large amounts of data.

//table of contents /

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

02

EDITORIAL
Editor in Chief
Andrew Binstock

Managing Editor
Claire Breen

Copy Editors
Karen Perkins, Jim Donahue

Technical Reviewer
Stephen Chin

DESIGN
Senior Creative Director
Francisco G Delgadillo

Design Director
Richard Merchán

Senior Designer
Arianna Pucherelli

Designer
Jaime Ferrand

Senior Production Manager
Sheila Brennan

Production Designer
Kathy Cygnarowicz

PUBLISHING
Publisher
Jennifer Hamilton +1.650.506.3794

Associate Publisher and Audience
Development Director
Karin Kinnear +1.650.506.1985

Audience Development Manager
Jennifer Kurtz

ADVERTISING SALES
Sales Director
Tom Cometa

Account Manager
Mark Makinney

Account Manager
Marcin Gamza

Advertising Sales Assistant
Cindy Elhaj +1.626.396.9400 x 201

Mailing-List Rentals
Contact your sales representative.

RESOURCES
Oracle Products
+1.800.367.8674 (US/Canada)

Oracle Services
+1.888.283.0591 (US)

ARTICLE SUBMISSION
If you are interested in submitting an article, please email the editors.

SUBSCRIPTION INFORMATION
Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE
java@halldata.com Phone +1.847.763.9635

PRIVACY
Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer
that your mailing address or email address not be included in this program, contact
Customer Service.

Copyright © 2016, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise

reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY

DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY

DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. Opinions

expressed by authors, editors, and interviewees—even if they are Oracle employees—do not necessarily reflect the views of Oracle.

The information is intended to outline our general product direction. It is intended for information purposes only, and may not

be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied

upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s

products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly and made available at no cost to qualified subscribers by

Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600.

ATMs, Smartcards, POS Terminals, Blu-ray Players,

Set Top Boxes, Multifunction Printers, PCs, Servers,

Routers, Switches, Parking Meters, Smart Meters,

Lottery Systems, Airplane Systems, IoT Gateways,

Programmable Logic Controllers, Optical Sensors,

Wireless M2M Modules, Access Control Systems,

Medical Devices, Building Controls, Automobiles…

#1 Development Platform

7 Billion
Devices Run Java

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:jennifer.hamilton%40oracle.com?subject=
mailto:karin.kinnear%40oracle.com?subject=
mailto:jennifer.s.kurtz%40oracle.com?subject=
mailto:tom.cometa%40oracle.com?subject=
mailto:mark.makinney%40sprocketmedia.com?subject=
mailto:marcin%40sprocketmedia.com?subject=
mailto:cindy%40sprocketmedia.com?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
mailto:java%40halldata.com?subject=
mailto:java%40halldata.com?subject=
https://www.oracle.com/java/index.html

https://zeroturnaround.com/software/xrebel/trial/tshirt/?utm_source=javamag&utm_medium=fullpage&utm_campaign=xrebeltshirtpromo

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

04

//from the editor /

PHOTOGRAPH BY BOB ADLER/GETTY IMAGES

In late April, Oracle announced that it would be

shuttering project-hosting sites Project Kenai

and Java.net at the end of April 2017. The reason

was that there was no desire to compete with sites

such as Bitbucket and GitHub, among others. The

closures continue a long-standing phenomenon:

the exiting from open source project hosting by

companies whose principal business is not closely

tied to hosting code.

Project hosts did not really begin in earnest

until the open source movement took root in the

late 1990s.

By 1999, two principal models for open source

project hosts began to emerge: the open-to-

everyone sites and the more selective hosts. The

The Miserable Business of
Hosting Projects
With more companies leaving the business and the survivors in an intense price

war, is the model of free open-source hosting sustainable?

latter group included Codehaus, Tigris.org, and

other sites that required approval before a project

could reside there. Typically, the requirements

focused on the kind of license, the seriousness of

the project, and whether it had the potential to

catalyze a developer community.

These sites were viewed as the elite stratum.

They hosted vetted projects that were likely to

succeed. This model worked surprisingly well.

Codehaus became the home of Groovy, Maven,

Sonar, and most of the early IoC (inversion of

control) frameworks—not bad for a site host-

ing a few hundred projects. The Apache Software

Foundation and the Eclipse Foundation today

pursue a similar model (although with important

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/java

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

05

//from the editor /

structural diferences). For this
model to truly work, the sponsor-

ing organization must be able to

successfully solicit funds to cover

costs and recruit volunteers to

run operations. Without this kind

of funding support, most of these

curation-based sites have atro-

phied or disappeared altogether.

Facing of against them are
hosts that accept all projects.

For much of the previous

decade, the leader was undeni-

ably SourceForge. If curating

hosts were the cathedrals, then

SourceForge was the bazaar:

active, noisy, illed with large
amounts of low-value projects—

projects abandoned immediately

after setting up the site, class-

room projects, and so on—inter-

spersed with occasional jewels.

The success of this model

inspired competitors—notably

Google Code, which quickly

became the place to go for devel-

oper-oriented projects. And the

model sprouted a hybrid approach

in which sites welcomed projects

if they fulilled some minor crite-

ria. Java.net was such a site, with

the requirement that projects be

written in Java. Similar language-

speciic sites, such as RubyForge,
followed this approach.

Competition among hosts,

however, created a double bur-

den. Not only were hosts obliged

to bear the costs of providing

services for free, but they also

needed to regularly upgrade their

oferings. Most sites, after sev-

eral rounds of investing in new

features, decided to throw in the

towel. Google Code, Java.net,

Project Kenai, JavaForge, and oth-

ers have closed or are in the pro-

cess of shutting down.

Part of the pressure came from

new companies that have a true

commercial stake in hosting

projects and are willing to make

continuous investments in the

services: principally, Bitbucket

(part of Atlassian), GitHub, and

GitLab.

Their oferings are polished
and deep—websites, wikis, code

review tools, and defect trackers,

in addition to SCM. (Extensive as

these oferings are, I should point
out, they are not as complete as

early sites, such as Codehaus,

which also ofered email and
mailing lists, hosted user forums,

provided continuous integration,

and arranged for free licenses to

commercial development tools.)

While the new market leaders

have earned their places through

admirable products and wise

community development, it’s still

diicult to tell whether the model
of hosting huge numbers of proj-

ects at no cost can be sustained

long-term. GitHub, for example,

has revamped its pricing due to

head-to-head competition with

GitLab—with each side progres-

sively ofering more unlimited
features at no cost. Obviously,

that’s a model that cannot con-

tinue indeinitely.
This situation is somewhat

reminiscent of where publishing

was ive or six years ago—a time
when sites competed by ofering
ever deeper and more-elaborate

content at no cost. Eventually,

the model had to self-correct,

and now paid subscriptions are

emerging as the new norm.

I expect that given the long

list of companies exiting project

hosting and the intense compe-

tition among the survivors, the

model will eventually need to

evolve to one in which developers

pay for some of the services they

now get for free. Given the high

quality of the current oferings,
it seems fair to me to ask that we

shoulder some of those costs.

Andrew Binstock, Editor in Chief

javamag_us@oracle.com

@platypusguy

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://about.gitlab.com/2016/05/11/git-repository-pricing/
mailto:javamag_us%40oracle.com?subject=
https://twitter.com/platypusguy
http://oracle.com/java

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

06

//letters to the editor /

A Note on Annotations
In “Annotations: An Inside Look” (March/April 2016,

page 35), Cédric Beust wrote, “Since 2004, there has

been only one major update to annotations in the JDK:

JSR 308, which added more locations where annota-

tions could be placed.”

However, it’s worth knowing that Java 8 improves

brevity by allowing multiple annotations of the same

type to be written on an element without the need for

a “wrapper” annotation. For example, on page 47 of

“What’s New in JPA: The Criteria API,” the code

@NamedQueries({
 @NamedQuery(name=..., query=...),
 ... })

could drop @NamedQueries if NamedQuery was

repeatable, and simply use multiple @NamedQuery

annotations directly on the class. The javadoc for

java.lang.reflect.AnnotatedElement has more

info for interested readers.

—Alex Buckley

Speciication Lead, Java Language and VM, Oracle

var vs. val
Re: your editorial on JDK Enhancement Proposal 286

(March/April 2016, page 3), I don’t agree that

var surprise = new HadynSymphony();

is better than

HadynSymphony surprise = new HadynSymphony();

In the example you provided, you didn’t really cut

down on the verbosity in a meaningful way; you just

MARCH/APRIL 2016

ENUMS 40 | JPA CRITERIA 45 | GOLO LANGUAGE 54

ORACLE.COM/JAVAMAGAZINE

INSIDE THE

JVM’S CODE

CACHE

24
HOW JAVA

COLLECTIONS

BECAME LAZY

28
PROCESSING

ANNOTATIONS

35
G1 AND

SHENANDOAH:

THE NEW GARBAGE

COLLECTORS

20
UNDERSTANDING

WHAT THE JIT IS

DOING

14

 Inside Java

and the JVM

MARCH/APRIL 2016

replaced one token with another that’s shorter but

also less meaningful. You went from “here’s a new

variable with the speciied type” to “here’s a new
variable.” Yes, the irst approach potentially saves
me a few keystrokes, but for whom are those key-

strokes really a problem? I’ve been coding in Java

awhile and never thought (or heard anyone else say),

“Gee, I wish I didn’t have to deine the type of a local
variable—that would save me so much time and

make debugging easier.”

Also, many type names are shorter—sometimes

signiicantly so—than HaydnSymphony. In fact, I

suspect that the somewhat longish name was delib-

erately chosen to exaggerate the supposed beneits of
the proposal. Plus there’s also the fact that something

like this is fairly common:

Symphony surprise = new HadynSymphony();

Using the var approach here would not only elimi-

nate useful information (the type I really care about

versus the implementation that was instantiated), but

all I’d get in exchange for the loss of readability is the

time I saved not typing a whopping ive characters.
And that, in a nutshell, seems to be the problem with

this proposal: the loss of code readability isn’t ofset
by a comparable gain in the amount of time it takes

to create or maintain the code. It seems like a solu-

tion in search of a problem and a desperate attempt to

ind some way to change Java rather than something
that will actually be beneicial for either beginning or
experienced programmers.

Regarding val versus const, I have to disagree

there, too. In all honesty, when I irst saw your val

example, I wondered what it was that identiied it as a
constant in val normalTemp = 98.6;.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/AnnotatedElement.html
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/AnnotatedElement.html

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

07

//letters to the editor /

Then I realized that the earlier example (Haydn-

Symphony) used var while this one was using val.

In other words, without careful scrutiny it’s easy to

get them confused. Part of the problem is the visual

similarity, but it’s also an issue of semantics: the

name val by itself doesn’t imply something that’s

constant. From a Java perspective, var doesn’t just

mean something that can vary, because both oicially
(that is, in the Java Language Speciication, which talks

about “constant variables”) and informally (in your

editorial), variable is used as an umbrella term that

includes both constants and true variables. That’s also

how it’s used in the vernacular by Java programmers,

making var a poor choice for indicating something

that’s mutable and noninal.
The one thing I do think would be an improvement

is something that wasn’t even presented, speciically
something like this:

const normalTemp = 98.6;

This provides the abbreviated grammar without the

vagueness of val and seems like a no-brainer when

compared to its current equivalent:

final float normalTemp = 98.6f;

Here the const keyword stands in for final, and

it indicates that the type is to be inferred from the

assigned value. There’s still a loss of explicit infor-

mation (the variable being deined is a float), but at

least now you’ve gone from two tokens down to one

instead of trading one token for a diferent and less
meaningful one.

—Brett Spell

Editor Andrew Binstock responds: Thank you for your very
thoughtful, detailed note. You make some excellent points,
even though my preferences run counter to yours. However,
I do disagree with your dismissal of the value of fewer
keystrokes. You see little beneit as the initial programmer.
However, as a reader of code, being faced with long listings
that repeat unneeded type information is a tiring exercise
that delivers little value. While you view my example as
purposely lengthy to help make my point, my concern at
the time was that it was unrealistically short. Developers
writing enterprise apps, especially ones that rely on frame-

works, are familiar with (and tired of) dealing with data
types that carry much longer names. For example, from the
Spring framework: AbstractInterceptorDriven
BeanDefinitionDecorator. That, I grant you, is per-

haps an extreme case; however, long class names are the
norm in those applications.

Shorten from the Other End
Regarding your editorial in the March/April issue

about the proposed additions to Java, why is the vari-

ability removed from the left side to be inferred from

the right to mimic dynamically typed language syn-

tax? Consider your example:

var surprise = new HaydnSymphony();

versus my recommendation:

HaydnSymphony surprise = new();

I prefer the fact that a statically typed language has a

strong reference to the type a variable is declared to

be. The verbosity comes in when you have to repeat it

for the new operator. My approach also makes it easier

in debugging, and not just in local scope use.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://goo.gl/lK3cvQ
http://goo.gl/lK3cvQ

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

08

//letters to the editor /

Similarly for the native or ixed-value types, I am
less conlicted but still prefer the type information to
be added to the variable declaration:

val normalTemp = 98.6;

would convey more information if it used the literal

speciier of f:

const normalTemp = 98.6f;

From South Africa, thanks for a wonderful magazine.

—Rudolf Harmse

Why Not Left-Side “new”?
Instead of the var keyword, I propose an idea I sub-

mitted a long time ago to Project Coin. It’s the use of

new on the left side of assignments. Instead of

HaydnSurprise surprise = new HaydnSymphony();

I suggest

new surprise = HaydnSymphony();

This avoids an additional keyword and is the simplest

statement.

As for val, I think using the reserved const key-

word is a better solution, if in fact it’s truly a inal
constant and not just an initial assignment. I think

more Java programmers come from the C and C++

languages than from Scala, although for younger pro-

grammers, Java or JavaScript is now their initial lan-

guage. In any case, there’s less need for simplifying

constant declarations than object declarations.

—Barry Kleinman

Short Books for Learning Java
I’m contemplating becoming a mobile game devel-

oper, and I’m struggling to grasp Java as a irst-time
programming language. Why is it so diicult to learn?
The books that I have been studying are more than

1,000 pages long. It’s a serious commitment to make.

Are most professional Java programmers self-taught?

How should I train my mind for this? What should I be

thinking of?

—Frederick Piña

Editor Andrew Binstock responds: Only a fraction of pro-

grammers are formally trained. Many are self-taught, and
even those who are formally trained eventually need to be
self-taught to keep up with advances in software develop-

ment. When learning a new language, a common approach
is to begin by writing small programs that do simple tasks.
A classic, for example, is a program that accepts a centi-
grade temperature on the command line and displays the
equivalent Fahrenheit temperature. If this approach of
learning by doing—using small, incremental programs—
appeals to you, then I recommend Murach’s Beginning

Java. It comes in two lavors depending on which develop-

ment environment you use—Eclipse or NetBeans—and it
weighs in at well under 1,000 pages. I reviewed this book
in the January/February 2016 issue, on page 12.

Contact Us
We welcome comments, suggestions, grumbles,

kudos, article proposals, and chocolate chip cookies.

All but the last two might be edited for publication.

If your note is private, indicate this in your message.

Write to us at javamag_us@oracle.com. For other

ways to reach us, see the last page of this issue.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://openjdk.java.net/projects/coin/
http://goo.gl/y1pYv2
mailto:javamag_us%40oracle.com?subject=

ORACLE.COM/JAVAMAGAZINE // MAY/JUNE 2016

09

//events /

PHOTOGRAPH BY DIEGO TORRES SILVESTRE/FLICKR

JavaOne Latin America JUNE 28–30

SÃO PAULO, BRAZIL

The Latin American version of the pre-

mier Java event includes presentations by

the core Java team, tutorials by experts,

and numerous information-rich sessions,

all focused tightly on Java.

GeeCON

MAY 11–13

KRAKOW, POLAND

GeeCON is a conference

focused on Java and JVM-based

technologies, with special

attention to dynamic languages

such as Groovy and Ruby. The

event covers topics such as

software development meth-

odologies, enterprise archi-

tectures, design patterns, and

distributed computing. More

than 80 sessions are slated.

O’Reilly OSCON

MAY 16–19

AUSTIN, TEXAS

The popular open source con-

ference moves to Texas this

year, with two days of training

and tutorials before the two-

day conference. Topics this

year include Go unikernels,

scaling microservices in Ruby,

Apache Spark for Java and Scala

developers, and an Internet

of Things (IoT) keynote from

best-selling science iction
author and Creative Commons

champion Cory Doctorow.

JavaCro

MAY 18–20

ROVINJ, CROATIA

JavaCro, hosted by the Croatian

Association of Oracle Users

and Croatian Java Users

Association, will once again

be held on St. Andrew Island,

also known as the Red Island.

Touted as the largest Java com-

munity event in the region,

JavaCro is expected to gather 50

speakers and 300 participants.

JEEConf

MAY 20–21

KIEV, UKRAINE

JEEConf is the largest Java

conference in Eastern Europe.

The annual conference focuses

on Java technologies for appli-

cation development. This year

ofers ive tracks and 45 speak-

ers on modern approaches in

the development of distrib-

uted, highly loaded, scalable

enterprise systems with Java,

among other topics.

jPrime

MAY 26–27

SOFIA, BULGARIA

jPrime is a relatively new con-

ference with talks on Java,

various languages on the JVM,

mobile and web develop-

ment, and best practices. Its

second edition will be held in

the Soia Event Center, run
by the Bulgarian Java User

Group, and backed by the big-

gest companies in the city.

Scheduled speakers this year

include former Oracle Java

evangelist Simon Ritter and

Java Champion and founder of

JavaLand Markus Eisele.

IndicThreads

JUNE 3–4

PUNE, INDIA

IndicThreads enters its 10th

year featuring sessions on the

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.oracle.com/br/en/javaone/index.html
http://2016.geecon.org
http://conferences.oreilly.com/oscon/open-source-us
http://2016.javacro.hr/eng
http://jeeconf.com
http://jprime.io
http://pune16.indicthreads.com

ORACLE.COM/JAVAMAGAZINE // MAY/JUNE 2016

10

//events /

latest in software development

techniques and technologies, from

IoT to big data, Java, web technol-

ogies, and more.

Devoxx UK

JUNE 8–10

LONDON, ENGLAND

Devoxx UK focuses on Java, web,

mobile, and JVM languages. The

conference includes more than

100 sessions, with tracks devoted

to server-side Java, architecture

and security, cloud and containers,

big data, IoT, and more.

JavaDay Lviv

JUNE 12

LVIV, UKRAINE

More than a dozen sessions are

planned on topics such as Java SE,

JVM languages and new program-

ming paradigms, web develop-

ment and Java enterprise technol-

ogies, big data, and NoSQL.

Java Enterprise Summit

JUNE 15–17

MUNICH, GERMANY

Java Enterprise Summit is a large

enterprise Java training event

held in conjunction with a con-

current Micro Services Summit.

Together, they feature 24 work-

shops covering topics such as the

best APIs, new architecture pat-

terns, JavaScript frameworks, and

Java EE. (No English page available.)

JBCNConf

JUNE 16–18

BARCELONA, SPAIN

The Barcelona Java Users Group

hosts this conference dedicated to

Java and JVM development. Last

year’s highlights included tracks

on microservices and Kubernetes.

The Developer’s Conference (TDC)

JULY 5–9

SÃO PAULO, BRAZIL

Celebrating its 10th year, TDC is

one of Brazil’s largest conferences

for students, developers, and IT

professionals. Java-focused content

on topics such as IoT, UX design,

mobile development, and func-

tional programming are featured.

(No English page available.)

Java Forum

JULY 6–7

STUTTGART, GERMANY

Organized by the Stuttgart Java

User Group, Java Forum typi-

cally draws more than 1,000 par-

ticipants. A workshop for Java

decision-makers takes place on

July 6. The broader forum will

be held on July 7, featuring 40
exhibitors and including lectures,

presentations, demos, and Birds

of a Feather sessions. (No English

page available.)

JCrete

JULY 31–AUGUST 7

KOLYMBARI, GREECE

This loosely structured “uncon-

ference” will take place at the

Orthodox Academy of Crete. A

JCrete4Kids component intro-

duces youngsters to programming

and Java. Attendees often bring

their families.

JavaZone

SEPTEMBER 7–8

OSLO, NORWAY

This event consists of a day of

workshops followed by two days

of presentations and more work-

shops. Last year’s event drew

more than 2,500 attendees and

featured 150 talks covering a wide

range of Java-related topics.

JavaOne

SEPTEMBER 18–22

SAN FRANCISCO, CALIFORNIA

The ultimate Java gathering,

JavaOne features hundreds of ses-

sions and hands-on labs. Topics

include the core Java platform,

security, DevOps, IoT, scalable

services, and development tools.

Send us a link and a description of

your event four months in advance

at javamag_us@oracle.com.
PHOTOGRAPH BY DAVID HOLT/FLICKR

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.devoxx.co.uk
http://javaday.org.ua/lviv/
http://javaenterprisesummit.de
http://www.jbcnconf.com/2016/
http://www.thedevelopersconference.com.br
http://www.java-forum-stuttgart.de/
http://www.jcrete.org
https://2016.javazone.no
https://www.oracle.com/javaone/agenda.html
mailto:javamag_us%40oracle.com?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

11

The Spock testing framework

has been around for many years.

It was used originally by devel-

opers who wanted to leverage

Groovy’s uniquely good support

for scripting unit tests. Over

its lifetime, it has evolved into

a comprehensive framework

that includes a unit-test runner

(which drives JUnit), a mock-

ing framework, and a behavior-

driven development (BDD)–style

testing tool. As a result, you

can add Spock to your test-

ing without the need for sepa-

rate mocking/stubbing tools or

behavior-testing add-ons.

I irst started using Spock
years ago because of its excel-

lent support for data-driven

tests (a leadership position it still

retains). Since then, my admi-

ration has only grown. The big

knock on it during the interven-

ing years was the need to learn

Groovy scripting to write tests.

But as Groovy has grown in

popularity (driven in good part

by Gradle), this design is seen

increasingly as an advantage.

Correctly written, Spock tests

can work at the unit level (for

test-driven development, for

example), for integration tests,

for doing BDD, and for system-

wide tests. Spock is one of the

few tools that can be used by

both developers and QA teams,

without the excess complexity

such a product would imply.

What Spock has lacked, how-

ever, is good documentation.

Even today, its website is dei-

cient in many ways (despite

active product development and

fairly active mailing lists). This

book ills that gap. It provides
what you need to get started

(including integration with

IDEs and build tools) and then

pushes onward into exploit-

ing Spock’s features, both its

principal capabilities and the

advanced options. To overcome

the language barrier for devel-

opers mostly familiar with Java,

Konstantinos Kapelonis provides

a 30-page introduction to Groovy

that presents the basic knowl-

edge needed to write and run

tests, even complex ones.

The author’s style is clear

and rarely lacking. In addition,

the examples he provides dis-

play his deep familiarity with

Spock and the role it plays in

modern development. Although

the book is written for devel-

opers, Kapelonis dips into QA

perspectives on testing for the

issues raised. He also com-

bines BDD with mocking from

which he elaborates an inter-

esting mock-based approach to

design—all of which gives this

book a commendable applicabil-

ity. Recommended.

—Andrew Binstock

//java books /

JAVA TESTING WITH SPOCK
By Konstantinos Kapelonis

Manning Publications

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.manning.com/books/java-testing-with-spock

Written by leading Java experts, Oracle Press books offer the most defi nitive,

complete, and up-to-date coverage of Java available.

www.OraclePressBooks.com • @OraclePressAvailable in print and as eBooks

Your Destination for Java Expertise

Raspberry Pi with Java:

Programming the

Internet of Things (IoT)

Stephen Chin, James Weaver

Use Raspberry Pi with Java to create

innovative devices that power the

internet of things.

Introducing JavaFX 8

Programming

Herbert Schildt

Learn how to develop dynamic JavaFX

GUI applications quickly and easily.

Java: The Complete Reference,

Ninth Edition

Herbert Schildt

Fully updated for Java SE 8, this

definitive guide explains how to

develop, compile, debug, and run

Java programs.

OCA Java SE 8 Programmer I

Study Guide (Exam 1Z0-808)

Edward Finegan, Robert Liguori

Get complete coverage of all

objectives for Exam 1Z0-808.

Electronic practice exam questions

are included.

http://www.OraclePressBooks.com

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

13
ART BY WES ROWELL

From Big Data
to Insights

W
hile batch processing of data has been part of

enterprise computing since its earliest days,

so-called big data brings to it the beneits of
considerable scale, good performance, and the

ability to investigate data deeply on comparatively inex-

pensive hardware. The core change that makes this wave

of processing innovation possible is the software that can

exploit runtime advances. Not so long ago, the software

center of the big data universe was Apache Hadoop. Two

years later, other packages such as Apache Spark extend

Hadoop’s original mission. Our irst feature article (page 14)

explains how Spark works and how comparatively easy it is

to understand and use. The second article on Spark (page 20)

is for nonenterprise developers and hobbyists who want to

try out big data on smaller projects.

However, Spark is not the only approach to massive data

sets. Sometimes, you need to do things the old-fashioned

way. Our article on JDBC for large data volume (page 30)

gives handy reminders for not overtaxing the database

server. And our inal article (page 26) explains how one

company designed and built a massive in-memory, of-heap
queue. It’s open source and written strictly in Java, and it

stores tens of gigabytes outside the JVM. (In fact, JVMs can
share data through this queue.)

There are surely more ways than these to be part of the

big data revolution, but these will get you started and enable

you to do some seriously fun experimenting.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

14

//big data /

In recent years, the amount of data that organizations pro-

cess has grown astronomically—as much as hundreds of

terabytes a day in some cases, and dozens or even hundreds

of petabytes in total. This “big data” far exceeds what can be

stored or processed on a single computer. Handling the vol-

ume, velocity, and variety of data required by modern applica-

tions has prompted many organizations to move to distributed

systems, where clusters of dozens or hundreds of computers

work together to solve their data ingestion, processing, and

analysis needs.

But distributed programming is challenging: the complex-

ity involved with keeping data and processes in sync while

dealing with the reality of limited bandwidth and individual

system failures initially meant programmers were spending

more time on the plumbing of distributed systems than actu-

ally processing or analyzing their data.

One of the most successful approaches to solving these

issues has been Apache Hadoop and its principal core com-

ponents: the Hadoop MapReduce data processing engine and

the Hadoop Distributed File System (HDFS) data storage plat-

form. Hadoop has been widely adopted and is used today by

many organizations. But Hadoop MapReduce has limitations:

it is cumbersome to program; it fully supports only Java (with

limited support for other languages); and it is bottlenecked by

the requirement that data be read from disk and then written

to disk after each task.

Apache Spark is designed as the next-generation distributed

computing framework, and it takes Hadoop to the next level.

What Is Spark?
Spark is a fast, scalable, general-purpose distributed process-

ing engine. It provides an elegant high-level API for in-

memory processing and signiicant performance improve-

ments over Hadoop MapReduce.

Spark includes not only the core API but also a rich set of

libraries, which includes Spark SQL for interacting with struc-

tured or tabular data; Spark Streaming for processing stream-

ing data in near real time; MLlib for machine learning; and

GraphX for graph processing.

Spark is written in Scala, a scalable JVM language with a

Java-inspired syntax. In addition to Scala, the Spark API also

supports Java, Python, and R, making it easy to integrate with

third-party libraries and accessible to developers with a wide

range of backgrounds.

Spark was originally conceived and developed at Berkeley’s

AMPLab. Now, it is an Apache project and is available

directly from Apache or preintegrated with several Apache

Hadoop distributions including those from Cloudera and

other vendors.

Spark Architecture Overview
Although Spark can be run locally on a single computer for

testing or learning purposes, it is more often deployed on a

distributed computing cluster that includes the following:
■■ A distributed data storage platform. This is most often

HDFS, but Spark is increasingly being deployed on other

distributed ile storage systems such as Amazon Simple

DIANA CARROLL

Apache Spark 101
Getting up to speed on the popular big data engine

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://spark.apache.org/

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

15

//big data /

Storage Service (S3). As Spark emerges as the new default

execution engine for the Hadoop ecosystem, support for

it is increasingly included in new projects such as Apache

Kudu (an Apache incubator project).
■■ A cluster resource management platform. Hadoop YARN

(which is part of core Hadoop) is the most common such

platform for enterprise production systems. Spark also

includes a small built-in cluster system called Spark

Standalone, which is suitable primarily for small clusters,

testing, or proof-of-concept deployment. Spark supports

Apache Mesos as well. Because YARN is the most com-

mon, I have chosen to use it with the examples for this

article, but the concepts are similar for all three supported

cluster platforms.

Spark can be invoked interactively using the Spark shell

(available for Scala or Python), or you can submit an appli-

cation to run on the cluster. Both are shown as options in

Figure 1. In both cases, when the application starts, it connects

with the YARN Resource Manager. The Resource Manager

provides CPU and memory resources on worker nodes within

the cluster to run the Spark application, which consists of a

single driver and a number of executors.

The driver is the main program, which distributes and

manages tasks that run on the executors. The driver and each

executor run in their own JVM running on cluster worker

nodes. (You can also conigure your application so that the
driver runs locally rather than on the cluster, but this is less

common in production environments.)

Code Examples
To help demonstrate how the Spark API works, I walk through

two code examples below. While Spark does support Java, the

vast majority of installations use Scala. The examples are writ-

ten in Scala and run in the interactive Spark shell. If you don’t

know Scala, don’t worry; the syntax is similar to Java and my

explanations will make the function of the code clear.

If you want to work through the examples on your own, you

irst need to download and run Spark. The easiest approach is
to download the “Pre-built for Hadoop 2.6 and later” package

of the latest release of Spark and simply unpack it into your

home directory. Once it is unpacked, you can run the spark-

shell script from the package’s bin directory. For simplic-

ity, these instructions start the shell locally rather than on

a Hadoop cluster. Detailed instructions on how to download

and launch Spark are on the Spark website.

You also need to download and unpack the example data,

from the Java Magazine download area. The code examples

assume that you have unpacked the data directory (weblogs)

into your home directory.

Example 1: Count Unique Visitors
The example data set is a collection of web server log iles
from the customer support site of a ictional mobile provider

Figure 1. Spark and YARN working together

YARN Worker Nodes

YARN

Resource

Manager

Spark
Executor

Spark
Executor

Spark
Executor

Spark
Executor

Spark Driver
Program

$ spark-submit
 --master yarn-cluster
 --class MyClass
 MyProgram.jar

$ spark-shell
 --master yarn

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://spark.apache.org/downloads.html
http://spark.apache.org/docs/latest/
https://goo.gl/ruJ629

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

16

//big data /

called Loudacre. This is a typical line from the sample data

(wrapped here to it):

3.94.78.5 - 69827 [15/Sep/2013:23:58:36 +0100]
 "GET /KBDOC-00033.html HTTP/1.0" 200 14417
 "http://www.loudacre.com"
 "Loudacre Mobile Browser iFruit 1"

The task in this irst example is to ind the number of unique
site visitors—that is, the number of user IDs in the data set.

User IDs are in the third ield in the data ile, such as 69827

in the example data above.

The Spark context. Every Spark program has a single Spark

context object, an instance of the SparkContext class. When

using the interactive Spark shell, this object is automati-

cally created for you and given the name sc. When writing an

application, you will create one yourself.

The Spark context provides access to Spark functional-

ity, such as deining and loading data sets and coniguring
the application. The Spark context is the entry point for all

Spark functionality.

scala> val weblogs =
| sc.textFile("weblogs/*")

(Note that the Spark shell scala> prompt is shown at the

beginning of each line. Line continuation is indicated with a

pipe character: |. Do not enter the prompt or pipe character

in the shell. Also, Microsoft Windows users might need to

substitute the full Windows pathname of the example data

directory, such as C:\\Users\\diana\\weblogs*.)

Because my code example uses the interactive Spark

shell, I can use the precreated Spark context sc. The line of

code above creates a new Resilient Distributed Dataset (RDD)

object for the data in the speciied set of iles, and assigns
it to a new immutable variable called weblogs. The iles are
located in your home directory in the default ile system. (If

you download Spark as described previously, the default ile
system is simply your computer’s hard drive. If you install

Spark as part of a Hadoop distribution, such as Cloudera’s, the

default ile system is HDFS.)
Resilient distributed data sets. RDDs are a key concept in Spark

programming. They are the fundamental unit of computa-

tion in Spark. RDDs represent a set of data, such as a set of

weblogs in this example.

RDDs are distributed because the data they represent may be

distributed across multiple executors in the cluster. The tasks

to process that data run locally on the executor JVM where

that data is located.

RDDs are resilient because the lineage of the data is pre-

served and, therefore, the data can be re-created on a new

node at any time. Lineage is the sequence of operations that

was applied to the base data set, resulting in its current state.

This is important because one of the challenges of distrib-

uted computing is dealing with the possibility of node failure.

Spark’s answer to this challenge is RDD lineage.

RDDs can contain any type of data, including objects and

nested data, such as arrays and sets. In this example, the

weblogs RDD contains strings—each element is a string cor-

responding to a single line in the iles from which the data
is loaded.

RDDs provide many methods to transform and interact

with the data they represent. Below are two simple examples:

count(), which returns the number of items in the data set,

and take(n), which returns an array of the irst n items in

the data set.

scala> weblogs.count()
Long = 574023

scala> weblogs.take(2)
» Array[String] = [3.94.78.5 - 69827
 [15/Sep/2013:23:58:36 +0100]
 "GET /KBDOC-00033.html HTTP/1.0"

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

17

//big data /

 200 14417 "http://www.loudacre.com"
 "Loudacre Mobile Browser iFruit 1",

 19.38.140.62 - 21475
 [15/Sep/2013:23:58:34 +0100]
 "GET /KBDOC-00277.html HTTP/1.0"
 200 15517 "http://www.loudacre.com"
 "Loudacre Mobile Browser Ronin S1"]

The character » indicates the result of a command executed

in the Spark shell. [The blank line in the output was added to

highlight the two array elements. —Ed.]

Transformations and actions. In addition to those shown in this

example, Spark provides a rich set of dozens of operations you

can perform with an RDD. These operations are categorized

as either actions or transformations.

Actions return data from the executors (where data is pro-

cessed) to the driver (such as the Spark shell or the main

program). For example, you saw above that the count()

action returns the number of data items in the RDD’s data set.

To do this, the driver initiates a

task on each executor to count

its portion of the data, and then

it adds those together to produce

the inal total. Other exam-

ples of actions include min(),

max(), first() (which returns

the irst item from the data
set), take() (seen earlier), and

takeSample() (which returns a

random sampling of items from

the data set).

A transformation is an RDD

operation that transforms the

data in the base or parent RDDs

to create a new RDD. This is

important because RDDs are

immutable. Once loaded, the data associated with an RDD

does not change; rather, you perform one or more transfor-

mations to create a new RDD with the data you need in the

form you need.

Let’s examine one of the most common transformations,

map(), continuing with the previous example. map() applies

a function, which is passed to each item in the RDD to pro-

duce a new item:

scala> val userids = weblogs.
| map (item => item.split(" ")(2))

You might be unfamiliar with the double-arrow operator (=>)

in the call to the map method. This is how Scala represents

lambda functions. Java 8, which also provides lambda func-

tions, uses similar syntax with a single arrow (->).

In this case, the map() method calls the passed function

once for each item in the RDD. It splits the weblog entry (a

String) at each space character, and returns the third string in

the resulting array. In other words, it returns the user ID for

each item in the data set.

The results of the transformation are returned as a new

RDD and assigned to the variable userids. You can take a

look at the results of the new RDD by calling the action meth-

ods described above, count() and take():

scala> userids.count()
» Long = 574023

Note that the total count is the same for the new RDD as

it was for the parent (base) RDD; this is always true when

using the map transformation because map is a one-to-

one function, returning one new item for every item in the

existing RDD.

take(2) returns an array of the irst two items—here, the
user IDs from the irst two lines of data in the data set:

Single-item operations
are powerful, but
many types of data
processing and analysis
require aggregating
data across multiple
items. Fortunately,
the Spark API
provides a rich set
of aggregation
functions.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

18

//big data /

scala> userids.take(2)
» Array[String] = [69827,21475]

At this point, this example is almost complete; the task was

to ind the number of unique site visitors. So another step

is required: to remove duplicates. To do this, I call another

transformation, distinct(), which returns a new RDD

with duplicates iltered out of the original data set. Then
only a single action, count(), is needed to complete the

example task.

scala> userids.distinct().count()
» Long = 12582

And there’s the answer: there are 12,582 unique site visitors in

the data set.

Note the use of chaining in the previous code snippet.

Chaining a sequence of operations is a very common tech-

nique in Spark. Because transformations are methods on an

RDD that return another RDD, transformations are chainable.

Actions, however, do not return an RDD, so no further trans-

formations can be appended on a chain that ends with an

action, as in this example.

Example 2: Analyze Unique Visitors
I’ll move on to a second example task to demonstrate some

additional Spark features using pair RDDs. The task is to ind
all the IP addresses for each site visitor (that is, each unique

user ID) who has visited the site.

Pair RDDs. The previous example (inding the number of
distinct user IDs) involved two transformations: map and

distinct. Both of these transformations work on indi-

vidual items in the data set, either transforming one item

into another (map), or retaining or iltering out an item
(distinct). Single-item operations such as these are power-

ful, but many types of data processing and analysis require

aggregating data across multiple

items. Fortunately, the Spark API

provides a rich set of aggrega-

tion functions. The irst step in
accessing these is to convert the

RDD representing your data into

a pair RDD.

A pair RDD is an RDD consist-

ing of key-value pairs. Each ele-

ment in a pair RDD is a two-item

tuple. (A tuple in Scala is a col-

lection similar to a Java list that

contains a ixed number of items,
in this case exactly two.) The irst
element in the pair is the key, and

the second is the value. For this

second example, you need to con-

struct an RDD in which the key is

the user ID and the value is the IP

address for each item of data.

scala> val userIPpairs = weblogs.
| map(item => item.split(" ")).
| map(strings => (strings(2), strings(0)))

Several things are going on in the code snippet above. First,

note the two calls to map in the same line. This is another

example of chaining, this time the chaining of multiple

transformations. This technique is very common in Spark. It

does not change how the code executes; it is simply a syntac-

tic convenience.

The irst map call splits up each weblog line by space, simi-

lar to the irst example. But rather than selecting just a single
element of the array that is returned from the split, the whole

array is returned containing all the ields in the current data
item. Therefore, the result of the irst map call is an RDD con-

Spark is a powerful,
high-level API
that provides
programmers the
ability to perform
complex big data
processing and analysis
tasks on a distributed
cluster, without having
to be concerned with
the “plumbing” that
makes distributed
processing diicult.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

19

//big data /

sisting of string arrays, one array for each item (weblog line)

in the base RDD.

The input to the second map call is the result of the irst map

call—that is, the RDD consisting of string arrays. The second

map call generates a pair (tuple) from each array: a key-value

pair consisting of the user ID (third element) as the key and

the IP address (irst element) as the value.
Use first() to view the irst item in the userIPpairs

RDD:

scala> userIPpairs.first()
» (String, String) = (69827,3.94.78.5)

Note that the irst item is, in fact, a pair consisting of a user
ID and an IP address. The userIPpairs RDD consists of the

same number of items as the base RDD, each paired with a

single IP address. Each pair corresponds to a single line in the

weblog ile.
Data aggregation. Now that the RDD is in key-value form,

you can use several aggregation transformations, including

countByKey (which counts the number of values for each

key), reduceByKey (which applies a function you pass to sum

or aggregate all the values for a key), join (which groups

values associated with keys from two diferent RDDs), and
mapValues (which applies a function to transform the value

of each key). To complete the task for the second example, use

the groupByKey transformation, which groups all the values

for each key in the RDD into a single collection:

scala> val userIPs=userIPpairs.groupByKey()
scala> userIPs.first()
» (String, Iterable[String]) =
 (52427,CompactBuffer(241.216.103.191,
 241.216.103.191, 70.50.111.153,
 70.50.111.153, 174.222.251.149,
 174.222.251.149, 20.23.59.237,
 20.23.59.237, 190.196.39.14,

 190.196.39.14, 67.250.113.209,
 67.250.113.209, …))

In the snippet above, the groupByKey transformation results

in a new pair RDD, in which the pair’s key is the same as it

was before, a user ID, but the pair’s value is a collection of all

the values (IP addresses) for that key in the data set.

Conclusion
As you can see, Spark is a powerful, high-level API that

provides programmers the ability to perform complex big

data processing and analysis tasks on a distributed clus-

ter, without having to be concerned with the “plumbing”

that makes distributed processing diicult. This article
has barely scratched the surface of Spark’s capabilities and

those of its add-on libraries, such as Spark Streaming and

Spark SQL. For more information, start at the Apache Spark

website. To explore Spark and the Hadoop stack indepen-

dently, download the Cloudera QuickStart Virtual Machine or

Docker image. </article>

Diana Carroll is a senior curriculum developer at Cloudera. She has

been working with and teaching about Spark since version 0.9 in

late 2013. Carroll wrote and taught one of the irst commercially

available courses on Java in 1997, and has also produced more than

20 courses for software developers, system administrators, data

analysts, and business users on subjects ranging from ecommerce

to business process management.

Wikipedia entry for Apache Spark

Another introductory article on Spark

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.cloudera.com/downloads/quickstart_vms/5-5.html
http://www.cloudera.com/downloads/quickstart_vms/5-5.html
https://en.wikipedia.org/wiki/Apache_Spark
http://www.infoq.com/articles/apache-spark-introduction

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

20

//big data /

In every application, there is a need to move data around, and

the larger the application, the more data is involved in this

process. A mandatory step before using any kind of data is

to prepare it. You need to clean the data by removing useless

parts and then shape or structure it so that it its your pro-

cesses. This could include adding a default value for missing

data, trimming the whitespace from strings, removing dupli-

cates, or anything else. There are many things that can be

done, all tied to what you want to do with the data.

Often, the format of the data you’re working with is sub-

ject to change. Being able to remain lexible in the database
layer is critical in these scenarios because, as a developer, you

should not spend your development time maintaining data-

base schemas. A NoSQL database is particularly helpful due

to its ability to remain lexible, allowing you to focus on your
code and work with data instead of worrying about how the

data exists in the database.
In this article, I present a personal example. As a couple

expecting their irst child, my wife and I came across a situa-

tion that every expecting parent encounters: needing to pick
a name for our baby. Being the software developer that I am,

it made sense to write an application that could supply ideas

for a name that my wife and I might both like.

A data set on the Kaggle data science website contains a

list of baby names that have been chosen in the US for almost

a century. This data set—one of many on the internet—greatly

facilitates experimenting with big data. Although not a need
for me, in many use cases, a common requirement is doing

analysis in real time with a massive amount of input.

In this project, I show how to ingest this unstructured,

dirty, comma-separated values (CSV) data into NoSQL using

Couchbase and process it in real time using RxJava or Apache
Spark, so it can later be used in my application.

The Elements of the Big Data Pipeline
As a Java developer, you’ll often need to load CSV data into
your database. CSV data is raw data, to an extent, and typi-
cally must irst be processed to match your data model.

The baby name data that I am using is raw CSV data. There

are several data iles in this data set, but my needs only
regard how many times each name was used every year. This

information can be found in NationalNames.csv, which is

structured as follows:
■■ ID
■■ Name
■■ Year
■■ Gender
■■ Count

Before this data can be queried and analyzed, it must irst be
processed into a more manageable format. There are several

ways to transform it. For this example I’m using both RxJava
and Apache Spark.

NIC RABOY

Using Spark and Big Data
for Home Projects
Create a small personal project using big data pipelines.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.kaggle.com/kaggle/us-baby-names

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

21

//big data /

What is RxJava? If this is

your irst time hearing of
Reactive Java, otherwise
known as RxJava, it is

deined this way in the oi-

cial documentation:
“RxJava is a Java VM imple-

mentation of ReactiveX

(Reactive Extensions): a library

for composing asynchronous

and event-based programs by

using observable sequences.”

What does this mean? RxJava is reactive programming,
which in this case means programming with asynchronous

data streams. These data streams can be anything from

application variables to data structures. It doesn’t matter. You

can listen for these streams and react appropriately when

they come in.

In the example of processing a CSV ile, each line of the
CSV ile could be a data stream. When the line is read, RxJava
reacts and transforms it as necessary.

What is Apache Spark? Apache Spark is a data-processing

engine designed to handle massive amounts of data. While

RxJava works well, it wasn’t meant to handle the petabytes
of information in an enterprise application. Spark ofers in-
memory data storage and processing, which makes it signii-

cantly faster than competing big data technologies. I’ll use

it for that purpose. [An accompanying article in this issue,

“Apache Spark 101” (page 14), presents a deep dive into using

Apache Spark. —Ed.]

Before querying and analyzing the loaded and transformed

data, the goal is to get the unstructured data into a NoSQL

database. For this example, I’ll use the NoSQL document
database, Couchbase.

What is Couchbase? Couchbase is an open source NoSQL

document database. Document databases such as Couchbase

store complex data using JSON, the same data format com-

monly used in public-facing APIs. For example, the following
would be considered a JSON document:

{
 "first_name": "Nic",
 "last_name": "Raboy",
 "address": {
 "city": "San Francisco",
 "state": "California",
 "country": "USA"
 }
}

Notice that nested objects and arrays are fair game in a

schemaless database such as this. The beneit of using a
schemaless database instead of a relational database is lex-

ibility in how the data is stored. You don’t need to declare any

constraints beforehand, and if the data is irregular you can

add or omit ields as needed. Raw data can be a mess, and
sometimes it’s easier to store it without forcing it into a rela-

tional schema.

NoSQL document databases are not the only type of NoSQL

database platforms, and NoSQL is not the only type of data-

base platform.

In the NoSQL database market segment, there are several

kinds of options: document, key-value, tabular databases, and
specialized products such as graph databases—all of which

store data diferently. Unlike relational databases, NoSQL
databases store data in an unstructured way, as demonstrated

in the JSON example.
Couchbase is distinguished by its memory-centric architec-

ture. It is composed of a RAM layer and a persisted disk layer.

Data is written to and read from the memory layer and asyn-

chronously written to disk. This makes Couchbase very quick

and a good resource to use with big data.

Couchbase Apache Spark Connector. Apache Spark also does

Spark ofers in-memory
data storage and
processing, which makes
it significantly faster
than competing big data
technologies.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/ReactiveX/rxjava/wiki
http://spark.apache.org/

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

22

//big data /

most of its data processing in

memory, using hard disk only

when necessary. Couchbase uses a

Spark connector to move data into

and out of the database directly.

This uses a feature of Spark called

resilient distributed data sets, most

often referred to as RDDs.

Loading and Transforming the CSV Data into Couchbase
As mentioned a few times earlier, the CSV data for the baby

names irst needs to be loaded into a database before I start
to process it. There are many ways to do this, but when work-

ing with potentially massive amounts of data, it would make

the most sense to load this data either through RxJava or
Apache Spark.

Coming from a Java background, you might not be famil-
iar with big data tools such as Apache Spark, and that’s not a

problem. This CSV data set, with roughly 2 million records,

can be loaded successfully using Java.
The requirements for loading with RxJava. There are a few

dependencies that must be included in the Java project before
attempting to load the CSV data into Couchbase:

■■ A CSV reader such as OpenCSV
■■ RxJava
■■ The Couchbase Java SDK

You can obtain all of these dependencies through Maven by

including them in the project pom.xml ile.
Developing an RxJava CSV loader. I’ll create a class—it doesn’t

matter what I call it—that represents the RxJava way for pro-

cessing the CSV ile. I’ll also create a class for the Apache
Spark way later.

To load, but not read, the CSV ile, I’ll create a new
CSVReader object, as follows:

CSVReader reader =

 new CSVReader(new FileReader("PATH_TO_CSV_FILE"));

Because the data will eventually be written to the database,

I must connect to my server and open the bucket, which is a

collection of NoSQL documents.

Bucket bucket =
 CouchbaseCluster.create("http://localhost:8091").
 openBucket("default", "");

This code assumes that Couchbase is running locally and the

data will be saved in the default bucket without a password.

To process the CSV data set, I must create an RxJava
Observable:

Observable
 .from(reader)
 .map(
 csvRow -> {
 JsonObject object = JsonObject.create();
 object
 .put("Name", csvRow[1])
 .put("Year", csvRow[2])
 .put("Gender", csvRow[3])
 .put("Count", csvRow[4]);
 return JsonDocument.create(
 csvRow[0], object);
 }
)
 .subscribe(document -> bucket.upsert(document),
 error -> System.out.println(error));

Let’s look at what is happening in the Observable. The CSV

Reader creates an Iterable<String[]>. The Observable

will use the Iterable<String[]> as the source of data for

the .from() method.

The data that is read will be an array of strings, not some-

thing that can be stored directly in the database. Using the

Apache Spark was
designed to process
massive amounts
of data.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

23

//big data /

.map() function, the array of strings can be transformed

into whatever I decide. In this case, the goal is to map each

line of the CSV ile to a database document. During this
mapping process, I could do some data cleanup. For exam-

ple, while I don’t do it here, I could use something such as

csvRow[*].trim() to strip out any leading and trailing

whitespace in each CSV column.

Finally, I must save to the database each read line that’s pro-

cessed. The .subscribe() method from the previous snip-

pet of code subscribes to notiications that the Observable

emits—in this case, the manipulated data record.

After executing the RxJava class for loading CSV data,
there should be almost 2 million documents created con-

taining baby names, containing the ields speciied in the
Observable. An example of one of the documents might
be this:

{
 "Name": "Nicolas",
 "Year": "1988",
 "Gender": "M",
 "Count": 400
}

Transforming raw data into JSON using Apache Spark. RxJava
works great, but what if you’re working with hundreds of mil-

lions of CSV records? Apache Spark was designed to process

massive amounts of data.

Using the same sample data as in the RxJava segment, I
give Apache Spark a try.

The requirements for loading with Apache Spark. I must include

a few dependencies in the Java project before I attempt to load
the CSV data into Couchbase:

■■ Spark Core
■■ Spark CSV
■■ Spark SQL

■■ Couchbase Apache Spark Connector

You can obtain all of these dependencies through Maven by

including them in your pom.xml ile.
Developing an Apache Spark CSV loader. To use Apache Spark in

the Java project, I must irst conigure it in the code:

SparkConf conf = new SparkConf()
 .setAppName("Simple Application")
 .setMaster("local[*]")
 .set("com.couchbase.bucket.default", "");
JavaSparkContext javaSparkContext =
 new JavaSparkContext(conf);

The application name will be Simple Application, and the

master Spark cluster will be the local machine, because Spark

will be running locally in this example. The Couchbase bucket
I will use is once again the default bucket.

To proceed, I need to create a Spark DataFrame. DataFrames

are distributed collections of data that are organized similarly

to a relational database table and are particularly useful

when it comes to CSV data because CSV data closely resembles

a table.

To create a Spark DataFrame, I need to create a SQL

Context. I can do this by using the JavaSparkContext.

The JavaSparkContext represents a connection to the

Spark cluster, which in this case is being run locally. With

the JavaSparkContext, a SQLContext can be created

that allows for the creation of DataFrames and the usage of

SparkSQL:

SQLContext sqlContext =
 new SQLContext(javaSparkContext);

Using the SQLContext, the CSV data can be read like this:

DataFrame dataFrame = sqlContext.read()
 .format("com.databricks.spark.csv")

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

24

//big data /

 .option("inferSchema", "true")
 .option("header", "true")
 .load("PATH_TO_CSV_FILE");

The read process will use the Spark CSV package and preserve

the header information that exists at the top of the CSV ile.
When read into a DataFrame, the CSV data is now something

Couchbase can understand. There is no need to map the data,

as was done with RxJava.
I must make an adjustment to the ID data. Spark will rec-

ognize it as an integer or numeric value because this data set

has only numeric values in the column. Couchbase, however,

expects a string ID, so this bit of Java code using the Spark
API solves the problem:

dataFrame = dataFrame.withColumn(
 "Id", df.col("Id").cast("string"));

I can now prepare the DataFrame for saving to the database:

DataFrameWriterFunctions
 dataFrameWriterFunctions =
 new DataFrameWriterFunctions(
 dataFrame.write());
Map<String, String> options =
 new Map.Map1<String, String>("idField", "Id");

With the DataFrame data piped into the appropriate Data

FrameWriterFunctions object, I can map the ID value to a

document ID. At this point, I can save the data:

dataFrameWriterFunctions.
 couchbase(options);

By calling the Couchbase function of DataFrameWriter

Functions, massive amounts of Couchbase documents will

now be saved to the bucket.

I can execute the project after I package it by doing some-

thing like the following:

/path/to/apache/spark/bin/spark-submit \
--class "com.app.Main" \
target/project-jar-with-dependencies.jar

Querying the Data for a Perfect Baby Name
Until now, the raw CSV data containing the baby names has

been transformed and saved as JSON data in the database.
The goal of this project hasn’t been met yet. The goal was to

come up with some nice baby name options. The project is in

a good position at the moment, because the data is now in a

format that can be easily queried.

Choosing a great name with RxJava. With the naming data

loaded into Couchbase, it can now be queried. In this

instance, I’m going to use RxJava to query the data to try to
come up with a good baby name.

Let’s say, for example, that I want to name my baby using
one of the most popular names. I could create the following

RxJava function:

public void getPopularNames(
 String gender, int threshold) {
 String queryStr =
 "SELECT Name, Gender, SUM(Count) AS Total " +
 "FROM 'default' WHERE Gender = $1 GROUP BY " +
 "Name, Gender HAVING SUM(Count) >= $2";
 JsonArray parameters = JsonArray.create()
 .add(gender)
 .add(threshold);
 ParameterizedN1qlQuery query =
 ParameterizedN1qlQuery.parameterized(
 queryStr, parameters);
 this.bucket
 .query(query)
 .forEach(System.out::println);
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

25

//big data /

In the previous function, two

parameters can be passed: the
gender I am looking for and a

threshold to determine popular-

ity. Let’s say, for example, my
wife and I ind out we’re having a
boy (I don’t know yet), and we want

to choose from a list of names that

have been used more than 50,000

times. I could pass M and 50000

into the function and the param-

eterized query would be executed.
Each row that satisies the

query would be printed to the

console logs.

Because the Couchbase Java SDK supports RxJava and a SQL-
like language called N1QL, there are many more options when

it comes to querying the name data.

Choosing a great name with Apache Spark. What if the data set

were in the hundreds of millions of documents? While RxJava
might perform well, it is probably best to use something such

as Spark because it was designed for massive amounts of data.

To use Spark to get a list of popular baby names based on a

gender and a threshold, I might do something like this:

public void getPopularNames(
 String gender, int threshold) {
 String queryStr = "SELECT Name, Gender, " +
 "SUM(Count) AS Total FROM 'default' " +
 "WHERE Gender = $1 GROUP BY Name, " +
 "Gender HAVING SUM(Count) >= $2";
 JsonArray parameters = JsonArray.create()
 .add(gender)
 .add(threshold);
 ParameterizedN1qlQuery query =
 ParameterizedN1qlQuery.parameterized(
 queryStr, parameters);

Code download from the Java Magazine download area

OpenCSV, a Java parser for CSV files

learn more

By using Apache
Spark and Couchbase,
you can process
massive amounts
of raw data quickly
even on systems
designed for personal-
scale projects.

 this.couchbaseSparkContext
 .couchbaseQuery(query)
 .foreach(queryResult ->
 System.out.println(queryResult));
}

Notice that the setup and parameterization is the same. The

diference comes in where the query is actually executed.
Instead of the built-in RxJava features of the Couchbase Java
SDK, I use the Apache Spark Connector, which makes it pos-

sible to use Spark to run our application.

Conclusion
Let me be clear. I haven’t actually chosen a name for my irst-
born child, but if I wanted to make a decision in a statistical

way through the use of RxJava and Apache Spark, I could.
By using big data tools such as Apache Spark combined with

a NoSQL database such as Couchbase, which ofers a memory-
centric architecture, you can process massive amounts of raw

data quickly even on systems designed for personal-scale

projects. </article>

Nic Raboy (@nraboy) is a developer advocate for Couchbase in the

San Francisco Bay Area. He has released several native and hybrid

mobile applications to iTunes and Google Play and writes about his

development experiences with a focus on making web and mobile

app development easier to understand.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://bitbucket.org/javamagazine/magdownloads/wiki/2016%20--%20May-June:%20Big%20Data
http://opencsv.sourceforge.net/

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

26

//big data /

My company develops software for inancial services
irms, particularly for high-frequency trading. This

kind of software requires the ability to store large amounts of
transactional data in memory. By large amounts, I mean tens
of gigabytes, sometimes more than 100 GB per day in real-
time systems. For oline reporting, the largest data set we’ve
imported into Java was 100 TB. In this article, I explain how
we built a data structure—a specialized queue—that can man-
age terabytes of data of the heap. This article is intended for
intermediate to advanced programmers.

The queue implementation, called Chronicle Queue, is an
open source, persisted journal of messages. It supports con-
current writers and readers even across multiple JVMs on the
same machine. Every reader sees every message, and a reader
can join at any time and still see every message. In our appli-
cations, we assume that you can read and scan through mes-
sages fast enough that even if you aren’t interested in most
messages, getting at the information you want will still be
fast enough.

In our design, readers are not consumers, so messages don’t
disappear after they’re read. This message retention has mul-
tiple advantages when compared with the usual queue opera-
tion of message removal:

■■ A message can be replayed as many times as needed.
■■ A day of production messages can be replayed in testing

months later.

■■ It reduces the requirement for logging almost entirely.
But, of course, it presents the problem of an ever-growing
data set that needs to be managed in memory.

Designwise, the unbounded queue model removes the
need for low control between the writers and readers that is
required with traditional queues, so that spikes in data inlow
don’t overlow the queue. There is no interaction between the
writers and readers, and you can performance-test them in
isolation and expect to get similar results when they’re run-
ning at the same time.

Note: There can be a coordination overhead when mul-
tiple threads are writing to the same data structure. We have
found this overhead to be signiicantly improved in Intel
Haswell processors compared with Sandy Bridge processors.
This coordination is implemented entirely using Java’s atomic
compare-and-set operations, without interacting with the
operating system.

For developers, the retention of messages and absence of
the need for low control has these speciic advantages:

■■ You can reproduce a bug even if it only occurs once in a mil-
lion messages, by replaying all the messages that led to the
bug triggering—but, more importantly, you can have coni-
dence that the bug, rather than a bug, has been ixed.

■■ You can test a microservice replaying from the same input
ile repeatedly without the producer or downstream con-
sumers running.

PETER LAWREY

Building a Massive Off-Heap
Data Queue
How one company built a data queue that scales to more than 100 GB

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/OpenHFT/Chronicle-Queue

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

27

//big data /

■■ You can test every microservice independently because there
is no low control interaction between them. If you have
low control between, let’s say, 20 services, any one of those
services could slow down any producer and, in turn, its
producer until the entire system locks up. This is something
you need to test for. Without low control, this can’t happen.

Inside Chronicle Queue
What might be surprising is that Chronicle Queue is written
entirely in pure Java. It can outperform many data storage
solutions written in C. You might be wondering how that’s
possible, given that well-written C is usually faster than Java.

One problem with any complex application is that you need
a degree of protection between your services and your data
storage to minimize the risk of corruption. As Java uses a
JVM, it already has an abstraction layer and a degree of pro-
tection. If an application throws an exception, this doesn’t
mean the data structure is corrupted. To get a degree of iso-
lation in C, many data storage solutions use TCP to commu-
nicate with large data structures. The overhead of using TCP
(even over loopback) can exceed the performance beneit of
using C. Because Chronicle Queue supports sharing of the
data structure in memory for multiple JVMs, it eliminates the
need to use TCP to share data.
Memory management. Chronicle Queue is built on a class
called MappedBytes in the package Chronicle-Bytes. It
implements the message queue as a memory-mapped ile.
MappedBytes in turn maps the underlying ile into mem-

ory in chunks, with an overlapping region to allow messages
to easily pass from one chunk to another. The default chunk
size is 64 MB, and the overlap is 16 MB. When you write just
one byte, 80 MB (64 + 16) of virtual memory is allocated.
When you get to the end of the irst 64 MB, another region is
mapped in and you get another 64 MB. It drops mappings on a
least recently used (LRU) basis. The result is a region of mem-
ory that appears to be unbounded and can exceed the virtual

memory limit of your machine, which is usually between
128 TB and 256 TB, depending on your operating system.

How do you load data into memory and save data? This is
what the operating system does for you. It zeroes out memory
pages you haven’t used, loads from disk pages that have been
used before, and saves data to disk asynchronously without
the JVM being involved or even running. For example, if
you write some data and your process dies, the data will still
appear in cache and be written to disk. (That is, if the operat-
ing system didn’t also die. To protect from operating system
failure, we use TCP replication.)

Linux (and Windows similarly) allows up to 10 percent of
main memory to be dirty/written to, but not saved to disk
(with the default setting). A machine with 512 GB of main
memory can have up to 51 GB of data uncommitted to disk.
This is an enormous amount of data—and you can accept a
burst of data this size with minimal impact on the application.
Once this threshold is reached, the application is prevented
from dirtying any new pages before some are written to disk.

Other Design Considerations
What if you don’t have a big server? Even a PC with 8 GB will
allow up to 800 MB of unwritten data. If your typical message
size is 200 bytes, this is still a capacity for a sudden burst of
4 million messages. Even while these messages are being
captured, data will be written to disk asynchronously. As
writes are generally sequential, you can achieve the maxi-
mum write throughput of your disk subsystem.

Chronicle Queue also supports a memory-mapped Hash-
Map. This is a good option if you need random access and
your data set its in memory; however, once your working set
of data exceeds the main memory size, performance can drop
by an order of magnitude.

A feature of the JVM that was essential for building this
library was the use of sun.misc.Unsafe. While its use is
highly discouraged, there wasn’t a practical alternative up to

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

28

//big data /

Java 8. In Java 9, I hope, we will see
a replacement in the form of cus-
tom intrinsics, which promise to be
a more powerful approach. What
makes intrinsics so important for
performance is that you don’t pay
the cost of using the Java Native
Interface (JNI). While the cost is low,
it’s not low enough if you’re calling
it around a billion times per second.
An intrinsic is a method that the
JVM recognizes and replaces with
machine code to do the same thing.
Usually this is a native method, but it
can even be a Java method.

The key beneit of using memory-
mapped iles is that you are no lon-
ger limited by the size of your heap,
or even the size of your main memory. You are limited only by
the amount of disk space you have. The cost of disk space is
usually still much lower than main memory.

A surprising beneit of memory-mapped iles is that you can
use them in a mode in which there is only one copy in mem-
ory. This means that in the operating system’s disk cache,
the memory in process A and the memory in process B are
shared. There is only one copy. If process A updates it, not only
is this visible to process B in the time it takes the L2 caches to
become coherent (that is, synchronize the data, which today
typically takes around 25 nanoseconds), but the operating
system can asynchronously write the data to disk. In addition,
the operating system can predictively read ahead, loading data
from disk when you access the memory (or iles) sequentially.

Finally, an important beneit of using a memory-mapped
ile is the ability to bind a portion of memory to an object. Java
doesn’t have support for pointers to random areas of memory.
We turn to an interface of getters, setters, and atomic opera-

tions and use of-heap memory as the storage and transport
between processes. For example, the header of the Chronicle
Queue has a ield for the last acknowledged index so replica-
tion can be monitored. This is wrapped as a LongValue inter-
face. When this object is read, written, or atomically updated,
the of-heap memory it points to is accessed. This value is
both shared between processes and persisted by the operat-
ing system without the need for a system call.
The data structure in detail. Each entry is a blob with a preix of
four bytes. The preix contains one bit indicating whether the
entry is user data or metadata needed to support the queue
itself, another bit indicates whether the message in the entry
is complete or not, and the remaining 30 bits contain the
length of the message.

When the message is not complete, it cannot be read. But
if the length is known, a writer can skip such messages and
attempt to write after them. If Thread1 is in the middle of
writing a message but it doesn’t know how long it will be, it
can write four bytes, which contains the length. Thread2 can
see that there will be a message and skip over it looking for
a place to write. This way multiple threads can write to the
queue concurrently. Any message that is detected as bad, such
as a thread that died while writing, can be marked as bad
metadata and skipped by the reader.

As the iles grow without limit, you may need to compress
or delete portions while the data structure is still in use. To
support this, we have time-based ile rolling. By default you
get one ile per day. This allows you to manage data simply by
compressing, copying, and deleting this daily ile. The rolling
can also be performed more or less often, as required.

There is a special value that is a “poison pill” value, which
indicates that the ile has been rolled. This ensures that all
writers and readers roll to the new ile at the same point in a
timely manner.

For the message data itself, we use a binary form of YAML

to store the messages because it’s a format that is designed to

By using a
transparent
format, we can
validate the
data structure
and focus on
portions of it at
a time, allowing us
to implement much
more complex data
structures.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://en.wikipedia.org/wiki/Java_Native_Interface
https://en.wikipedia.org/wiki/Java_Native_Interface
https://en.wikipedia.org/wiki/YAML

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

29

//big data /

be human-readable. We view JSON and XML as technologies
aligned with JavaScript and SGML, respectively, and not as
readable. We support JSON for messaging with browsers. The
binary form of YAML is used for performance reasons, and it
can be automatically translated to YAML for viewing.

We didn’t always use such a transparent format, and that
placed a limit on how complex the data structure could be. By
using a transparent format, we can validate the data structure
and focus on portions of it at a time, allowing us to imple-
ment much more complex data structures as well as support
backward compatibility for older formats.
Append-only benefits. Chronicle Queue is designed for sequen-
tial writes and reads. It also supports random access and
updates in place, although you can’t change the size of an
existing entry. You can minimize this limitation by padding
an entry for future use.

Sequential reads and writes are more eicient for per-
sistence to HDD and SSD disks. The append-only structure
makes replication much simpler as well.

Conclusion
Using native memory to complement managed, on-heap
memory can allow your Java application to exploit all the
memory of your server. It can even extend the available data
structure to exceed main memory by lushing to disk.

By using a simple data lifecycle and a transparent data
structure, you can move a signiicant portion of your data out
of the heap. This can improve the performance, stability, and
scalability of your application. </article>

Peter Lawrey (@PeterLawrey) has answered the most ques-

tions about Java, JVM, concurrency, memory, performance, and

ile I/O on StackOverlow.com (roughly 12,000), and he writes the

Vanilla Java blog. He is the architect of Chronicle Software and a

Java Champion.

Learn More

Learn Java 8
From the Source

Oracle University

 New Java SE 8 training and certification

 Available online or in the classroom

 Taught by Oracle experts

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://education.oracle.com/pls/web_prod-plq-dad/ou_product_category.getFamilyPage?p_family_id=48&p_mode=Training&sc=WWOU15043959MPP001C002

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

30

//big data /

When it comes to handling big data in applications, there

are several pitfalls to avoid. An application that runs

perfectly ine on a small or medium-size database can fail
once the database has increased in size. Failure points for
applications working with large amounts of data can encom-
pass a broad spectrum of areas, including memory, poor data-
base transaction performance, and bad architecture. Whether

your development team chooses to use JDBC or an object-
relational mapping framework, the architecture of your appli-
cation can mean the diference between success and failure.

In this article, I cover some best practices to be used for

working with data via JDBC or the Java Persistence API (JPA),

so that your application does not fail under the pressure of big

data. I don’t delve into any proprietary APIs or frameworks

for working with big data or target any particular database

options available via standard RDBMS or NoSQL. Rather, I

provide basic strategies for coniguring environments and
tuning code, as well as best practices for working with large

amounts of data via a Java application.

First Things First: Stored Procedures
Ask yourself this question: Why am I pulling this large

amount of data into my application? If the answer is that you

are trying to perform some calculations, analysis, or other

processing on a very large result set, you might want to recon-
sider your technique. Most databases (speciically RDBMSs)

contain a variety of built-in functions and procedures for
performing processing of data directly within the database,

whereas many NoSQL databases don’t ofer stored procedures.
However, many NoSQL databases ofer some type of func-
tion or stored code capability, although they’re not often as

capable as those ofered by a standard database. Many data-
base solutions also contain a language that enables you to

develop procedures that can be executed directly within the

database. For example, Oracle Database contains its own pro-
cedural language known as PL/SQL, which safely extends the

SQL language. When working with big data, you can achieve

huge performance gains by allowing the database, rather than

the application, to perform analytical processing—unless, of

course, there is an analytical processing requirement that can

only be performed outside of the database.

The JDBC API and JPA both contain solutions for calling

upon a database’s stored procedures. It’s also easy to pass or

retrieve values with stored procedures, and the best part is

that a single connection can be made to call upon the proce-
dure, which can in turn process thousands of records. Listing 1

demonstrates how to call a database stored procedure using

either JDBC or JPA.

Listing 1.
// Using JDBC to call upon a database stored
// procedure

JOSH JUNEAU

Big Data Best Practices
for JDBC and JPA
Focus on the fundamentals so you’re not overwhelmed by large amounts of data.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

31

//big data /

 CallableStatement cs = null;

 try {
 cs = conn.prepareCall("{call DUMMY_PROC(?,?)}");
 cs.setString(1, "This is a test");
 cs.registerOutParameter(2, Types.VARCHAR);
 cs.executeQuery();

 // Do something with result
 String returnStr = cs.getString(2);

 } catch (SQLException ex){
 ex.printStackTrace();
 }

// Utilize JPA to call a database stored procedure
// Add @NamedStoredProcedureQuery to entity class
@NamedStoredProcedureQuery(
 name="createEmp", procedureName="CREATE_EMP",
 parameters = {
 @StoredProcedureParameter(
 mode= ParameterMode.IN,
 type=String.class,
 name="first"),
 @StoredProcedureParamter(
 mode = ParameterMode.IN,
 type=String.class,
 name="last")
})

// Calling upon stored procedure
StoredProcedureQuery qry =
 em.createStoredProcedureQuery("createEmp");
qry.setParameter("first", "JOSH");
qry.setParameter("last","JUNEAU");
qry.execute();

Many database solutions also support stored procedures writ-
ten in Java. What better way to make the most of your Java

programming skills than to put them to work inside the data-

base? There are trade-ofs, though, because working with a
Java stored procedure still requires connection code to access

data, albeit inside the database rather than in an application.

Therefore, coding stored procedures in Java might prove to

be more cumbersome than doing so with a language that is

written for the database.

Sure, in the end any database-driven application will need
to work directly with data in some manner. But be mindful of

the diference between the work that can be performed in the
database and that which truly needs to be performed within a

Java application.

Getting the Configuration Correct
Typically, in their default coniguration, application servers
are conigured for use with applications utilizing average I/O.
Any coniguration that might afect performance should be
reviewed and conigured appropriately before you attempt to
use it on an application with large amounts of data.

Application-specific configurations. By default the JDBC driver

will retrieve a ixed number of rows with each fetch. For
example, the default number of rows fetched from Oracle
Database is 10. That means if you are trying to return 1,000

rows, your application will need to perform 100 fetch opera-
tions to retrieve all rows. Now imagine if you had to mul-
tiply that by 1,000—that could produce quite a bottleneck.

The JDBC setFetchSize() can

be used to provide a hint as to

the number of rows that should

be fetched. Listing 2 demon-
strates how to specify the hint. If

zero is speciied, then the JDBC
driver will ignore the value. As

can be seen in the code, once the

Statement has been created, sim-
ply set the desired fetch size. The
ResultSet fetch size can also be

If you need to work
with a specific set of
data multiple times,
connections can
be easily managed
by caching data.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

32

//big data /

speciied. This value overrides the Statement fetch size.

Listing 2.
String qry = "select …";
CreateConnection.loadProperties();
issuesList = new ArrayList();
try (Connection conn =
 CreateConnection.getConnection();
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(qry);) {
 stmt.setFetchSize(300);

 while (rs.next())
 . . .
 }
} catch (SQLException e) {
 // Log the exception
}

The same coniguration can be speciied utilizing JPA. Rather
than explicitly setting the fetch size for JPA, you can provide
a hint to “guide” the JDBC driver to fetch the desired number

of rows to improve performance. The code in Listing 3 dem-
onstrates how to specify the fetch size for a JPA query when
using the EclipseLink driver. The fetch size in this example is
speciied as a String value.

Listing 3.
public List<DukeIssues> findAllConfigureFetchSize(
 String fetchSize){
 Query qry = em.createQuery(
 "select object(o) from DukeIssues o");
 qry.setHint(
 "eclipselink.JDBC_FETCH_SIZE", fetchSize);
 return qry.getResultList();
}

It is imperative to test a big data application with diferent
values to determine the value that provides the most bene-

it. Keep in mind that setting
a larger fetch size will afect
the amount of memory that an

application requires. Be mind-
ful when setting the fetch size,
and also be sure to conigure
the amount of memory for your

application server accordingly.

Also be mindful of the other

JDBC driver conigurations that
might come into play when

working with large amounts of data.

Connection management. Connections can be very expensive,

so a good practice when working with databases is to limit the

number of connections that are required. This means that an

application should make the most of each connection rather

than being wasteful and performing only small amounts of

work with each connection. If you need to work with a spe-
ciic set of data multiple times, connections can be easily
managed by caching data, where possible. If many inserts,

updates, or deletes will be occurring, then you might need to

perform transactions or bulk updates rather than opening a

connection and disposing of it each time an update is made.

Connection pools that are managed by an application server

play an important role in management of data, in general.

Typically, there are default connection pool sizes put into
place by an application server. Once all the connections are
utilized, the application server will request more connections.
Likewise, if a connection is not being utilized, it’s placed back
into the pool. Sizing a connection pool appropriately for the
number of connections that an application will utilize is criti-
cal to good performance.

There are several ways to conigure a connection pool. An
application server connection pool can usually be conigured
via an administrative console, XML, or a command-line util-
ity. For instance, in the case of GlassFish, you can modify

Memory can also
become a concern if
you are caching a very
large amount of data,
so be sure to have your
environment up to par.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

33

//big data /

connection pool conigurations using the administrative
console or the asadmin command line utility. Listing 4 dem-
onstrates how to create a JDBC Connection Pool and JDBC

Connection Pool Resource via the utility.

Listing 4.
asadmin create-jdbc-connection-pool \
--datasourceclassname \
oracle.jdbc.pool.OracleDataSource \
--restype javax.sql.DataSource \
--property user=dbuser:password=dbpassword:url=
 "jdbc:oracle\:thin\:@localhost\:1521\:MYDB" \
jdbc_conn-pool

asadmin create-jdbc-connection-pool \
--connectionpoolid myjdbc_oracle-pool jdbc/resource

[The –-property user= line and the one after it should be

entered as a single item. —Ed.]

To obtain connections from a pool, the javax.sql

.ConnectionPoolDataSource interface can be utilized. The
ConnectionPoolDataSource returns a PooledConnection

object, which can then be utilized to obtain a Connection.

Typically a ConnectionPoolDataSource is implemented by

a Java Naming and Directory Interface connection object, and

a PooledConnection object can be retrieved by invoking the

getConnection() method, as shown in Listing 5. If you’re

using JPA, the EntityManager will handle obtaining connec-
tions, although there might need to be some coniguration
made within the Persistence Unit.

Listing 5.
ConnectionPoolDataSource cpds =
 (ConnectionPoolDataSource)
 initialCtx.lookup(jndiName);
PooledConnection pooledConn =
 ConnectionPoolDataSource.getConnection();
Connection conn = pooledConn.getConnection();

Another thing to keep in mind is the isolation level, which

is how a database helps maintain data integrity. The lower

the isolation level, the less uniform the system will become.

Diferent isolation levels have their own use cases, and some
also provide better performance than others. Study the

impact of each isolation level on the application to determine

the one that is best suited. Table 1 lists the diferent isolation
levels, from least consistent to most consistent, along with

their performance impact.

A full overview of each isolation level is out of the scope of

this article, but I mention this because it could be a factor in

performance and data integrity.

Best Practices for Data Access Code
Once the coniguration for an application and environment
is correct, the query and statement code is the next place

to look for signs of potential trouble. There are several best

practices to follow when coding an application, and any code

speciically dealing with data can have a major impact on the
performance of an application if it deals with large amounts

of data.

One of the irst things to keep in mind is caching data.
If an application will be utilizing a large number of records
for read-only purposes, then it makes sense to cache the
data so that it can be quickly accessed from memory rather

than fetched from the database. Of course, memory can also

Table 1. Transaction isolation levels

IS OL AT ION L E V EL P ERF ORM A NC E IMPAC T

TRANSACTION_NONE MAXIMUM SPEED

TRANSACTION_READ_UNCOMMITTED MAXIMUM SPEED

TRANSACTION_READ_COMMITTED FAST SPEED

TRANSACTION_REPEATABLE_READ MEDIUM SPEED

TRANSACTION_SERIALIZABLE SLOW SPEED

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

34

//big data /

become a concern if you are

caching a very large amount of

data, so be sure to have your

environment up to par. Another

coding practice that is impor-
tant to get correct is utilizing
the proper JDBC code for your

application requirements. I will

delve into some pointers to keep in mind when coding JDBC

and JPA queries for large data access. Lastly, managing opera-
tions when performing updates and deletes can be detri-
mental to an application’s success, and in this section I touch

upon some techniques for performing bulk operations.

Caching data. When an application is required to work with

the same data more than once, it makes sense to keep it

in memory rather than incur additional database round-
trips. There are several ways to cache data that is frequently

accessed into memory. One such solution is to utilize an in-
memory data grid, such as Hazelcast. Another solution is to
make use of built-in JDBC caching solutions, which often
provide a more lean but less robust alternative to a data grid.

In-memory data grids make it easy to store data in dis-
tributed Maps, Lists, and Queues so that it can be utilized
many times without making multiple trips to the database.

This solution, in particular, is easy to get started with, yet

it’s advanced enough to provide an abundance of options

for scaling, partitioning, and balancing your data. To make

things nicer, Payara has built-in Hazelcast solutions.
If you are leaning toward bare-metal JDBC caching, utiliza-

tion of JDBC solutions such as javax.sql.CachedRowSet

make it possible to store smaller amounts of data for repeated

access. Data within a CachedRowSet can be modiied and
later synchronized back to the database. A CachedRowSet

can be generated from a RowSetFactory or a CachedRowSet

default constructor. A Connection is then conigured for
the CachedRowSet object, and a String-based SQL command

is passed containing the query. If the object will be used for

making updates, then the primary keys of the table need to

be speciied. Lastly, the statement can be executed, return-
ing the data. Listing 6 demonstrates how to make use of a

CachedRowSet.

Listing 6.
RowSetFactory factory;

try {
// Create RowSetFactory
 factory = RowSetProvider.newFactory();
// Create a CachedRowSet object using the factory
 crs = factory.createCachedRowSet();
// Populate the CachedRowSet connection settings,
// if needed
// crs.setUsername(username);
// crs.setPassword(password);
// crs.setUrl(jdbc_url);
// Populate a query
 crs.setCommand("select id, request_date, "+
 "priority, description from duke_issues");
// Set key columns
 int[] keys = {1};
 crs.setKeyColumns(keys);
// Execute query
 crs.execute(conn);
// Manipulate the object contents in a
// disconnected state
 while (crs.next()) {
 // perform some work on the resultset
 }
} catch (SQLException ex) {
 ex.printStackTrace();
}

In JDBC, use PreparedStatements. First and foremost, if you
are writing JDBC, use PreparedStatements rather than

normal Statements. A PreparedStatement can be pre-

It is important to get
the correct JDBC driver
for your environment.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

35

//big data /

compiled, so if it is executed multiple times, it will not need

to be recompiled each time. Not only will your application

gain performance beneits but security beneits as well.
PreparedStatements are advantageous for guarding against

SQL injection. Listing 7 demonstrates the typical use of a

PreparedStatement for retrieving a ResultSet.

Listing 7.
public List<DukeIssues>
 queryIssues(String assignedTo) {
 String qry =
 "SELECT ID, REQUEST_DATE, PRIORITY, DESCRIPTION "
 + "FROM DUKE_ISSUES "
 + "WHERE assigned_to = ?";

 List<DukeIssues> issueList = new ArrayList();
 try (Connection conn =
 CreateConnection.getConnection();
 PreparedStatement stmt =
 conn.prepareStatement(qry))
 {
 stmt.setString(1, assignedTo);
 try (ResultSet rs = stmt.executeQuery();) {
 while (rs.next()) {
 int id = rs.getInt("ID");
 java.util.Date requestDate =
 rs.getDate("REQUEST_DATE");
 int priority = rs.getInt("PRIORITY");
 String description =
 rs.getString("DESCRIPTION");
 DukeIssues issue = new DukeIssues();
 issue.setId(id);
 issue.setRequestDate(requestDate);
 issue.setPriority(priority);
 issue.setDescription(description);
 issueList.add(issue);
 }
 }
 } catch (SQLException e) {

 e.printStackTrace();
 }
 return issueList;
}

It might be obvious, but make sure that Statements and

PreparedStatements are closed once they’ve been used.

Doing so gives the garbage collector an opportunity to recycle

the memory.

Use bulk operations. If an application is performing many

subsequent updates or deletes, then it might be best to per-
form these operations in bulk. Both JDBC and JPA provide

the means for using bulk write and delete operations when

needed. To fully understand if bulk operations will be help-
ful to your application, it’s important to understand how they

work. There are a couple of diferent types of batch writing:
parameterized and dynamic.

Parameterized batch writing essentially takes a bulk num-
ber of identical inserts, updates, or deletes and chains them

together, using bind variables for parameters. In other words,

the only thing that changes throughout the bulk of the oper-
ation is the parameters—the SQL for the operation remains

the same. The chain of operations is then sent to the database

in a single call and executed in bulk. Parameterized batch
writing improves performance twofold because the same

statement is utilized for each operation, so the SQL doesn’t
need to be parsed each time,

and only one network connec-
tion is used because everything is

sent in bulk.

Dynamic batch writing allows

each SQL statement in a bulk

operation to contain diferent SQL,
so more than one heterogeneous

statement can be sent in bulk to

the database. Parameter binding is

Data management
is the first step
toward writing an
application to work
with large amounts
of data.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

36

//big data /

not allowed with dynamic batch writing, so the SQL must be

parsed for each statement. Therefore, the net gain on perfor-
mance is only database connection-related, and it might not
be as beneicial as that of a parameterized batch operation.

Determining which type of bulk operation is being used by

your JDBC driver involves some amount of testing and inves-
tigation. JDBC contains a standard API that allows you to

determine which type of bulk operation you can perform. To

utilize batch operations with raw JDBC, irst set auto-commit
on the connection to false. By default, each operation is com-
mitted automatically, and by setting auto-commit to false
the operations will be executed but not committed until an

explicit commit is issued. Listing 8 shows a simple example

of how to perform a group of inserts and updates in a batch

operation. In a big data environment where many rows are

being inserted at a time, the insert statements may be issued

in a looping construct: irst opening the connection, next
looping through the inserts, and inally committing at the
end and closing the connection.

Listing 8.
List<DukeIssues> issueList = queryIssues("JUNEAU");

String insStmt1 =
"insert into duke_issues (id, request_date," +
"priority, description) values " +
"(908472, '2016-01-01',0,'QUERY NOT WORKING')";

String insStmt2 = "insert into duke_issues " +
"(id, request_date, priority, description) values "
+
"(908473, '2016-01-01',0,'RESULTS NOT POSTING')";

String updStmt = "insert duke_issues " +
"set status = ? where assigned_to = ?";

try (Connection conn = getConnection();
 Statement stmt = conn.createStatement();) {

 conn.setAutoCommit(false);

 // Perform loop here to add statements to the
 // batch transaction, if needed.

 stmt.addBatch(insStmt1);
 stmt.addBatch(insStmt2);
 stmt.addBatch(updStmt);
 int[] count = stmt.executeBatch();

 conn.commit();
 conn.setAutoCommit(true);
} catch (SQLException e) {
 // Log the exception
}

There is no prescribed standard for performing batch opera-
tions using JPA. However, most of the JPA providers do sup-
port some type of batching. To enable batch operations to

occur within a JPA environment, typically conigurations
must be made within the persistence unit. Most JPA drivers

accommodate parameterized and dynamic batch writing, so
you must conigure accordingly. Listing 9 demonstrates how to

conigure for EclipseLink within the persistence unit.

Listing 9.
<persistence-unit>
. . .
<property name="eclipselink.jdbc.batch-writing"
 value="JDBC"/>
<property name="eclipselink.jdbc.batch-writing.size"
 value="1000"/>
. . .
</persistence-unit>

Consider a specialized driver or API. It is important to get the

correct JDBC driver for your environment. Although the data-
base vendor may provide a JDBC driver, it might not be the

most optimal driver for your application’s use case. There are

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

37

//big data /

many drivers that have been speciically tuned for working
with large amounts of data. Make sure to choose one of those.

In other words, do your homework with respect to the data-
base platform and the environment you’ll be working in to

ensure you have the best driver for the job.

Conclusion
Before digging into the nuts and bolts of speciic APIs, data
management is the irst step toward writing an application to
work with large amounts of data. Data management strategies

include coniguring JDBC and JPA environments accordingly,
coding for the best performance, and caching as needed. Get
the fundamentals of the application working correctly to

avoid developing an application that doesn’t scale or perform

well. In this article, I looked at the basics. But once those

items are in place, it’s important that JDBC and JPA environ-
ments constantly be monitored for performance to get the

best possible performance for a given data load. </article>

Josh Juneau (@javajuneau) works as an application developer,

system analyst, and database administrator. He is a technical

writer for Oracle Technology Network and Java Magazine. He has

written books on Java and Java EE for Apress and is also a JCP

Expert Group member for JSR 372 and JSR 378.

Oracle’s JDBC tutorial

Oracle’s JPA tutorial

Background on database isolation

learn more

//user groups /

BARCELONA JUG
Barcelona, Spain, has a

vibrant startup ecosystem

and many business

communities related to

software. It’s a beautiful

city with lots of places

to visit and some of the

best urban beaches in the

world. It’s also home to the

Barcelona Java Users Group

(@barcelonajug), a non-
proit association built around a team with broad experience
in Java technologies. Since 2012, it has been organizing talks
and other get-togethers focused on Java topics, usually once a
month. Most of the meetings are held in English.

Some past topics include developer tools, testing techniques,

API design, and high-performance messaging. The group has
hosted talks from Stephen Chin (Oracle); Claus Ibsen, Mario
Fusco, Gavin King, and Mauricio Salatino (Red Hat); Jean-
Baptiste Onofré (Talend); Alex Soto (CloudBees); Peter Kriens
(OSGi Alliance); and Norberto Leite (MongoDB), among others.

Its big event last year was the Java Barcelona Conference, a

two-day event focused on Java, JVM, and related technologies,
as well as open source technologies. Developers from several

countries came to learn and explore software development in

a unique environment. The talks given at the 2015 event can

be viewed online.

The group is organizing this year’s event, which will take
place June 16 to 18, with even more topics and networking

opportunities. This year, the event will take place at Pompeu

Fabra University and include hands-on workshops. You can
learn more and buy tickets here.

For more about the Barcelona JUG, see Meetup or YouTube.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/tutorial/jdbc/
https://docs.oracle.com/javaee/6/tutorial/doc/bnbpz.html
https://en.wikipedia.org/wiki/Isolation_(database_systems)
http://barcelonajug.org
http://www.jbcnconf.com/2015/talks.html
http://www.jbcnconf.com/2015/talks.html
http://www.jbcnconf.com
http://www.meetup.com/BarcelonaJUG
https://www.youtube.com/user/BarcelonaJUG

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

38

//testing /

JUnit, the widely used Java unit testing framework, has

just seen the irst alpha release of version 5 after 10 years
on version 4. JUnit 5 consists of a revamped codebase with
a modular architecture, a new set of annotations, an exten-

sible model for third-party library integration, and the ability
to use lambda expressions in assertions. The predecessor of
JUnit 5 was the JUnit Lambda project, which sowed the irst
ideas for the next generation of unit testing and was crowd-

funded until October 2015.
Through the years, JUnit has captured the essence of what

a unit testing framework should be. However, its core mostly
stayed intact, which made it diicult for it to evolve. This new
version is a complete rewrite of the whole product that aims
to provide a suicient and stable API for running and report-
ing tests. Implementing unit tests with JUnit 5 requires Java 8
at a minimum, but it can run tests on code written for earlier
versions of Java.

In this article, I describe the principal features of this early
release of JUnit 5, illustrating them with detailed examples.
All the code in this article is based on JUnit version 5.0.0-
ALPHA, which was released in February 2016. The complete
source code for the examples in this article is available at the
Java Magazine download area.

The JUnit team is planning to ship a release candidate of
the framework in the third quarter of 2016. Milestone 1 is
one of the last steps before JUnit 5 oicially ships. This will
surely be one of the most consequential releases ever in the
Java ecosystem.

Configuring Tools to Use JUnit 5
JUnit 5 dependency deinitions are available for both Maven
and Gradle. For this article, I used Maven and its dependency
deinition for the JUnit 5 API. The following shows the Maven
inclusion of JUnit 5:

<dependency>
 <groupId>org.junit</groupId>
 <artifactId>junit5-api</artifactId>
 <version>5.0.0-ALPHA</version>
 <scope>test</scope>
</dependency>

JUnit 5 now consists of multiple modules including the
junit5-api module, which provides a transitive depen-

dency, and opentest4j, which is named after the Open Test
Alliance for the JVM project. Its aim is to provide a minimal
common foundation for testing libraries, IDEs, and other
tools such as TestNG, Hamcrest, Spock, Eclipse, Gradle,
Maven, and many others.

In addition, JUnit 5 has the following modules:
■■ junit5-api, an API module that contains classes for

implementing tests.
■■ junit4-engine, a JUnit 4 engine implementation. It

locates and runs JUnit 4–based tests.
■■ junit5-engine, a JUnit 5 engine implementation module.

It locates and runs JUnit 5-based tests.
■■ junit-engine-api, an abstraction API module for test-

ing engines. It provides an extensible mechanism with

MERT ÇALIŞKAN

JUnit 5: A First Look
The long-awaited release of JUnit 5 is a complete redesign with many useful additions.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://junit.org/junit4/junit5.html
https://goo.gl/7xyISv

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

39

//testing /

which current and feature testing frameworks can integrate

themselves by registering their test engines. Test engines
are identiied by an ID string, and the engines are located
via relection through the class loader. Test engines register
themselves via the JDK’s ServiceLoader class.

■■ junit-launcher, an integration module that is used by
build tools and IDEs to run tests. It makes it possible to run
JUnit 4 and JUnit 5 tests in a single run.

■■ junit-console, an API module for running JUnit 4 and
JUnit 5 tests from the command line. It prints execution
results to the console.

■■ junit-commons, a common API module that is being used
by all modules.

■■ junit4-runner, an API module for running JUnit 5 tests
on JUnit 4. This eases the migration of JUnit 4–based imple-

mentations to JUnit 5, because the IDEs and the build tools
don’t support JUnit 5 tests yet.

■■ surefire-junit5, a module that contains JUnitGen5

Provider, which integrates with the Maven Sureire plugin
for running JUnit 5 tests on JUnit 4.

■■ junit-gradle, a module that contains JUnit5Plugin,

which integrates with Gradle builds for running JUnit 5
tests on JUnit 4.

One of the main goals of JUnit 5 modules is to decouple the
API for executing the tests from the APIs for implementing
the tests.

Anatomy of a JUnit 5 Test
Let’s look at some JUnit 5 tests, starting with the simple JUnit
test shown in Listing 1.

Listing 1.
import org.junit.gen5.api.Test;

class SimpleTest {

 @Test
 void simpleTestIsPassing() {
 org.junit.gen5.api.Assertions.
 assertTrue(true);
 }
}

For a simple JUnit 5 test class, such as the one shown in
Listing 1, there is almost no diference to be seen at irst
glance when compared with a JUnit 4 test class. The main dif-
ference is that there is no need to have test classes and

methods deined with the public modiier. Also, the @Test

annotation—along with the rest of the annotations—has

moved to a new package named org.junit.gen5.api,

which must be imported.

Capitalizing on the Power of Annotations
JUnit 5 ofers a revised set of annotations, which, in my view,
provide essential features for implementing tests. The anno-

tations can be declared individually or they can be composed
to create custom annotations. In the following section, I
describe each annotation and give details with examples.
@DisplayName. It’s now possible to display a name for a test
class or its methods by using the @DisplayName annotation.

As shown in Listing 2, the description can contain spaces and
special characters. It can even contain emojis such as J.

Listing 2.
@DisplayName("This is my awesome test class")
class SimpleNamedTest {

 @DisplayName("This is my lonely test method")
 @Test
 void simpleTestIsPassing() {
 assertTrue(true);
 }
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

40

//testing /

@Disabled. The @Disabled annotation is analogous to the

@Ignore annotation of JUnit 4, and it can be used to disable
the whole test class or one of its methods from execution. The
reason for disabling the test can be added as description to
the annotation, as shown in Listing 3.

Listing 3.
class DisabledTest {

 @Test
 @Disabled("test is skipped")
 void skippedTest() {
 fail("feature not implemented yet");
 }
}

@Tags and @Tag. It’s possible to tag test classes, their meth-

ods, or both. Tagging provides a way of iltering tests for exe-

cution. This approach is analogous to JUnit 4’s Categories.

Listing 4 shows a sample test class that uses tags.

Listing 4.
@Tag("marvelous-test")
@Tags({@Tag("fantastic-test"),
 @Tag("awesome-test")})
class TagTest {

 @Test
 void normalTest() {
 }

 @Test
 @Tag("fast-test")
 void fastTest() {
 }
}

You can ilter tests for execution or exclusion by providing tag
names to the test runners. The way of running ConsoleRunner

is described in detail shortly. With ConsoleRunner, you can

use the –t parameter for providing required tag names or the
–T parameter for excluding tag names.
@BeforeAll, @BeforeEach, @AfterEach, and @AfterAll. The
behavior of these annotations is exactly the same as the
behavior of JUnit 4’s @BeforeClass, @Before, @After, and

@AfterClass, respectively. The method annotated with
@BeforeEach will be executed before each @Test method,

and the method annotated with @AfterEach will be exe-

cuted after each @Test method. The methods annotated with
@BeforeAll and @AfterAll will be executed before and
after the execution of all @Test methods. These four annota-

tions are applied to the @Test methods of the class in which

they reside and they will also be applied to the class hierar-

chy, if any exists. (See the next section on test hierarchies.)
The methods annotated with @BeforeAll and @AfterAll

need to be deined as static.
@Nested test hierarchies. JUnit 5 supports creating hierarchies
of test classes by nesting them inside each other. This option
enables you to group tests logically and have them under the
same parent, which facilitates applying the same initializa-

tion methods for each test. Listing 5 shows an example.

Listing 5.
class NestedTest {

 private Queue<String> items;

 @BeforeEach
 void setup() {
 items = new LinkedList<>();
 }

 @Test
 void isEmpty() {
 assertTrue(items.isEmpty());
 }

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

41

//testing /

 @Nested
 class WhenEmpty {
 @Test
 public void removeShouldThrowException() {
 expectThrows(
 NoSuchElementException.class,
 items::remove);
 }
 }

 @Nested
 class WhenWithOneElement {
 @Test
 void addingOneElementShouldIncreaseSize() {
 items.add("Item");
 assertEquals(items.size(), 1);
 }
 }
}

Assertions and Assumptions
The org.junit.gen5.Assertions class of JUnit 5 con-

tains static assertion methods—such as assertEquals,

assertTrue, assertNull, and assertSame—and their cor-

responding negative versions for handling the conditions
in test methods. JUnit 5 leverages the use of lambda expres-

sions with these assertion methods by providing overloaded
versions that take an instance of java.util.function

.Supplier. This enables the evaluation of the assertion
message lazily, meaning that potentially complex calculations
are delayed until a failed assertion. Listing 6 shows using a

lambda expression in an assertion.

Listing 6.
class AssertionsTest {

 @Test
 void assertionShouldBeTrue() {

 assertEquals(2 == 2, true);
 }

 @Test
 void assertionShouldBeTrueWithLambda() {
 assertEquals(3 == 2, true,
 () -> "3 not equals to 2!");
 }
}

The org.junit.gen5.Assumptions class provides assume
True, assumeFalse, and assumingThat static methods.

As stated in the documentation, these methods are use-

ful for stating assumptions about the conditions in which a
test is meaningful. If an assumption fails, it does not mean
the code is broken, but only that the test provides no use-

ful information. The default JUnit runner ignores such fail-
ing tests. This approach enables other tests in the series to
be executed.

Grouping Assertions
It’s also possible to group a list of assertions together. Using
the assertAll static method, which is shown in Listing 7,

causes all assertions to be executed together and all failures
to be reported together.

Listing 7.
class GroupedAssertionsTest {

 @Test
 void groupedAssertionsAreValid() {
 assertAll(
 () -> assertTrue(true),
 () -> assertFalse(false)
);
 }
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

42

//testing /

Expecting the Unexpected
JUnit 4 provides a way for handling exceptions by declar-

ing them as an attribute to the @Test annotation. This is
an enhancement compared with previous versions that
required the use of try-catch blocks for handling excep-

tions. JUnit 5 introduces the usage of lambda expressions
for deining the exception inside the assertion statement.
Listing 8 shows the placement of the exception directly into
the assertion.

Listing 8.
class ExceptionsTest {

 @Test
 void expectingArithmeticException() {
 assertThrows(ArithmeticException.class,
 () -> divideByZero());
 }

 int divideByZero() {
 return 3/0;
 }
}

With JUnit 5, it’s also possible to assign the exception to a
variable in order to assert conditions on its values, as shown
in Listing 9.

Listing 9.
class Exceptions2Test {

 @Test
 void expectingArithmeticException() {
 StringIndexOutOfBoundsException exception =
 expectThrows(
 StringIndexOutOfBoundsException.class,
 () -> "JUnit5 Rocks!".substring(-1));

 assertEquals(exception.getMessage(),

 "String index out of range: -1");
 }
}

Parameterized Test Methods
With JUnit 5, it’s now possible to have test methods with
parameters for the default runner implementation. This
option enables dynamically resolved parameters to be
injected at the method level. TestInfoParameterResolver

and TestReporterParameterResolver are two built-in
resolvers shipping with JUnit 5 that achieve this.

If the method parameter is an instance of org.junit
.gen5.api.TestInfo, then TestInfoParameter

Resolver will supply an instance of it as a parameter.
The test name or its display name can be retrieved from a
TestInfo instance.

If the method parameter is an instance of org.junit.gen5
.api.TestReporter, then TestReporterParameter

Resolver will supply an instance of it as a parameter. Key-
value pairs could be published to the reporter instance in
order to be used by IDEs or reporting tools, as in the example
shown in Listing 10.

Listing 10.
class ResolversTest {

 @Test
 @DisplayName("my awesome test")
 void shouldAssertTrue(
 TestInfo info, TestReporter reporter)
 {
 System.out.println(
 "Test " + info.getDisplayName() +
 " is executed.");

 assertTrue(true);
 reporter.publishEntry(
 "a key", "a value");

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

43

//testing /

 }
}

Instances of TestInfo or TestReporter can also be injected
into methods annotated with @BeforeAll, @BeforeEach,

@AfterEach, and @AfterAll.

The New Extension Model
JUnit 5 provides an extensible API for combining various
extension points. It gives new options to third parties for inte-

grating their own frameworks with the testing mechanism of

JUnit. With JUnit 4, this was possible with Runner, @Rule, and

@ClassRule, but JUnit 5 ofers a uniied API with which mul-
tiple extensions can be deined with @ExtendWith. Listing 11

is an example that employs Mockito framework integration.

Listing 11.
public interface User {
 String getName();
}

@ExtendWith(MockitoExtension.class)
class ExtensionsTest {

 @BeforeEach
 void init(@InjectMock User user) {
 when(user.getName()).thenReturn("Mert");
 }

 @Test
 void parameterInjectionWorksOk(
 @InjectMock User user) {
 assertEquals("Mert", user.getName());
 }
}

The MockitoExtension class is an implementation of
MethodParameterResolver, which is an extension point

for dynamically resolving method parameters at runtime.
So the parameter annotated with the marker annotation
@InjectMock will be mocked and stored through methods
annotated with @BeforeEach and @Test.

You can access the source code for MockitoExtension and

@InjectMock online.

Running JUnit 5
Currently, there is no support for directly running JUnit 5–

based tests in IDEs and build tools, although there soon
will be. JUnit 5 ofers two ways for integrating and running
JUnit 5–based tests. One is the ConsoleRunner, which is a

command-line application for running tests, and the other is
the JUnit 4 runner, which handles running tests on JUnit 4–

integrated IDEs and build tools. The JUnit 4 runner provides
integration with both Gradle and Maven build systems.

The ConsoleRunner can be executed with the Java com-

mand shown below. Building the classpath with the needed
JAR iles is a prerequisite for having the ConsoleRunner

execute successfully, so ensure that you have correct version

of the artifacts.

java -cp
 /path/to/junit-console-5.0.0-ALPHA.jar:
 /path/to/jopt-simple-4.9.jar:
 /path/to/junit-commons-5.0.0-ALPHA.jar:
 /path/to/junit-launcher-5.0.0-ALPHA.jar:
 /path/to/junit-engine-api-5.0.0-ALPHA.jar
 org.junit.gen5.console.ConsoleRunner

[Note that the command above should be entered as a single
command. —Ed.]

It’s also possible to run JUnit 5 tests in an IDE that supports
only JUnit 4. To enable this, the org.junit.gen5.junit4
.runner.JUnit5 class should be deined with the @RunWith

annotation, as shown in Listing 12.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/junit-team/junit5-samples/tree/master/junit5-mockito-extension/src/main/java/com/example/mockito

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

44

//testing /

Listing 12.
@RunWith(JUnit5.class)
public class RunWithTest {

 @Test
 public void simpleTestIsPassing() {
 org.junit.gen5.api.Assertions.
 assertTrue(true);
 }
}

The junit4-runner and junit5-engine module depen-

dency should be deined in the classpath along with the
JUnit 4 dependency.

Conclusion
The JUnit team has succeeded in ofering a new, redesigned

version of JUnit that addresses nearly all the limitations

of previous versions. Note that the JUnit 5 API is still sub-

ject to change; the team is annotating the public types
with the @API annotation and assigning values such as

Experimental, Maintained, and Stable.

Give JUnit 5 a spin, and be prepared for the release
that’ll hit the streets in late 2016. Keep your green bar
always on! </article>

Mert Çalişkan (@mertcal) is a Java Champion and coauthor

of PrimeFaces Cookbook (irst edition, Packt Publishing, 2013;

second edition, 2015) and Beginning Spring (Wiley Publications,

2015). He is the founder of AnkaraJUG, which is the most active

Java user group in Turkey.

JUnit 5 oicial documentation

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://junit.org/junit5/
http://www.oracle.com/java

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

45

//new to java /

In this installment of the “New to Java” series, I want to talk

about generics.

If you have programmed for a little while in Java, it is

likely that you have come across generics, and you have

probably used them. (They are hard to avoid when using

collections, and it is hard to do anything really interesting

without collections.) If you are coming to Java from C++, you

might have encountered the same concept as generics under

the name of parameterized types or templates. (Templates in

C++ are not the same as generics in all aspects, but they are

closely related.)

Many novice Java programmers use generics without a full

understanding of how they work and what they can do. This

gap is what I address in this article.

In Java, the concept of generics is simple and straight-

forward in principle but tricky in the details. There is much

to say about the corner cases, and it is also interesting to look

into how generics are implemented in the Java compiler and

the JVM. This knowledge helps you understand and anticipate

some of the more surprising behaviors.

My discussion is spread over two parts. In this issue, I

discuss the principles and fundamental ideas of generic

types. I look at the deinition and use of generics and pro-

vide a basic, overall understanding. In the next issue of Java

Magazine, I will look at the more subtle parts, advanced uses,

and implementation. If you read both articles, you will arrive

at a good understanding of how generics can help you write

better code.

A Bit of History
Before Java 5 was released in 2004, Java did not have generic

types. Instead, it had what are called heterogeneous collections.

Here is what an example of a heterogeneous list looked like in

those days:

List students = new ArrayList();

(Knowing this history is important, because you can still

write this code in Java today—even though you shouldn’t.

And you might come across these collections in legacy code

you maintain.)

In the example above, I intend to create a list of Student

objects. I am using subtyping—the declared type of the vari-

able is the interface List, a supertype of ArrayList, which

is the actual object type created. This approach is a good idea

because it increases lexibility. I can then add my student
objects to the list:

students.add(new Student("Fred"));

When the time comes to get the student object out of my list

again, the most natural thing to write would be this:

Student s = students.get(0);

This, however, does not work. In Java, in order to give the

List type the ability to hold elements of any type, the add

method was deined to take a parameter of type Object, and

MICHAEL KÖLLING

PHOTOGRAPH BY

JOHN BLYTHE

Understanding Generics
Use generics to increase type safety and readability.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

46

//new to java /

the get method equally returns an Object type. This makes

the previous statement an attempt to assign an expression

of type Object to a variable of type Student—which is

an error.

In the early days of Java, this was ixed with a cast:

Student s = (Student) students.get(0);

Now, writing this cast was always a mild annoyance. You usu-

ally know what types of objects are stored in any particular

list—why can’t the compiler keep track of them as well?

But the problem goes deeper than mere annoyance.

Because the element type of the list is declared to be Object,

you can actually add objects of any type to the same list:

students.add(new Integer(42));
students.add("a string");

The fact that this is possible—that the same list can hold

objects of diferent types—is the reason it is referred to as
heterogeneous: a list can contain mixed element types.

Having lists of diferent, unrelated element types is rarely
useful, but it is easily done in error.

The problem with heterogeneous

lists is that this error cannot be

detected until runtime. Nothing

prevents you from accidentally

inserting the wrong element

type into the student list. Worse,

even if you get the element out of

the list and cast it to a Student,

the code compiles. The error sur-

faces only at runtime, when the

cast fails. Then a runtime type

error is generated.

The problem with this runtime

error is not only that it occurs late

(at runtime, when the application might already have been

delivered to a customer), but also that the source location

of the detected error might be far removed from the actual

mistake: you are notiied about the problem when getting the
element out, while the actual error was made when putting

the element in. This might well be in a diferent part of the
program entirely.

Java and Type Safety
Java was always intended to be a type-safe language. This

means that type errors should be detected at compile time,

and runtime type errors should not be possible. This aim was

never achieved completely, but it’s a goal that the language

designers strove for as much as possible. Casting breaks this

goal: every time you use a cast, you punch a hole in type

safety. You tell the type checker to look the other way and

just trust you. But there is no guarantee that you will get

things right.

Many times, when a cast is used, the code can be rewrit-

ten: often better object-oriented techniques can be used to

avoid casting and maintain type safety. However, collections

presented a diferent problem. There was no way to use them
without casting, and this jarred with the philosophy of Java.

That such an important area of programming could not be

used in a type-safe way was a real annoyance. Thus in 2004,

the Java language team ixed this problem by adding generics
to the Java language.

Type Loss
The term for the problem with heterogeneous collections is

type loss. In order to construct collections of any type, the ele-

ment type of all collections was deined to be Object. The

add method, for example, might be deined as follows:

public void add(Object element)

It is useful to
understand one
aspect that changed
slightly when
generics entered
the Java language:
the relationship
between classes
and types.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

47

//new to java /

This works very well to put elements—say, objects of type

Student—into the collection, but it creates a problem when

you want to get them out again. Even though the runtime

system will know that the element is of type Student, the

compiler does not keep track of this. When you later use a

get method to retrieve the element, all the compiler knows is

that the element type is Object. The compiler loses track of

the actual element type—thus the term type loss.

Introduction to Generics
The solution to avoid type loss was to give the compiler

enough information about the element type. This was done

by adding a type parameter to the class or interface deini-
tion. Consider an (incomplete and simpliied) deinition of an
ArrayList. Before generics, it might have looked like this:

class ArrayList {
 public void add(Object element);
 public Object get(int index);
}

The element type here is Object. Now, with the generic

parameter, the deinition looks as follows:

class ArrayList<E> {
 public void add(E element);
 public E get(int index);
}

The E in the angle brackets is a type parameter: here, you can

specify what the element type of the list should be. You no

longer create an ArrayList object for the Student elements

by writing this:

new ArrayList()

Instead, you now write this:

new ArrayList<Student>()

Just as with parameters for

methods, you have a formal

parameter speciication in the
deinition (the E) and an actual

parameter at the point of use

(Student). Unlike method

parameters, the actual parameter

is not a value but a type.

By creating an ArrayList

<Student> (which is usually

read out loud as “an ArrayList of

Student”), the other mentions

of the type parameter E in the

speciication are also replaced
with the actual type parameter

Student. Thus, the parameter type of the add method and

the return type of the get method are now both Student.

This is very useful: now only Student objects can be added

as elements, and you retrieve Student objects when you get

them out again—no casting is needed.

Abstraction over Types
It is useful to understand one aspect that changed slightly

when generics entered the Java language: the relationship

between classes and types. Prior to generics, each class

deined a type. For example, if you deine a class Hexagon,

then you automatically get a type called Hexagon to use in

variable and parameter deinitions. There is a very simple
one-to-one relationship.

With generic classes, this is diferent. A generic
class does not deine a type—it deines a set of types.
For example, the class ArrayList<E> deines the
types ArrayList<Student>, ArrayList<Integer>,

ArrayList<String>, ArrayList<ArrayList<String>>,

When generics
were introduced,
a useful shortcut
notation—the
diamond notation—
was provided to ensure
that the increased
readability does not
lead to unnecessary
verboseness.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

48

//new to java /

and any other type that can be speciied by replacing the type
parameter E with a concrete type.

In other words, generics introduce an abstraction over

types—a powerful new feature.

The Benefits
One beneit of using generic classes should now be obvious:
improved correctness. Incorrect types of objects can no lon-

ger be entered into a list. While erroneous attempts to insert

an element could previously be detected only during testing

(and testing can never be complete), they are now detected at

compile time, and type correctness is guaranteed. In addition,

if there is such an error, it will be reported at the point of the

incorrect insertion—not at the

point of retrieving the element,

which is far removed from the

actual error location.

There is, however, a sec-

ond beneit: readability. By
explicitly specifying the ele-

ment type of collections,

you are providing useful information to human readers of

your program as well. Explicitly saying what type of ele-

ment a collection is intended for can make life easier for a

maintenance programmer.

The Diamond Notation
When generics were introduced, a useful shortcut nota-

tion—the diamond notation—was provided to ensure that

the increased readability does not lead to unnecessary

verboseness.

Consider the very common case of declaring a variable and

initializing it with a newly created object:

ArrayList<String> myList =
 new ArrayList<String>();

In some generic types, especially when there is more than

one generic parameter, this line can get rather long:

HashSet<Integer, String> mySet =
 new HashSet<Integer, String>();

And it can get worse if a type parameter itself is generic:

HashSet<Integer, ArrayList<String>> mySet =
 new HashSet<Integer, ArrayList<String>>();

In each of these examples, the same lengthy generic type is

spelled out twice: once on the left for the variable declaration

and once on the right for the object creation. In this situation,

the Java compiler allows you to omit part of the second men-

tion of the type and instead write this:

HashSet<Integer, String> mySet = new HashSet<>();

Here, the generic parameters are omitted from the right side

(leaving the angle brackets to form a diamond shape, thus the

term diamond notation). This is allowed in this situation and

means that the generic parameters on the right are the same

as those on the left. It just saves some typing and makes the

line easier to read. The semantics are exactly the same as

they would be had you written out the types in full.

Summary—So Far
This was the easy part. The use of generics can make code

safer and easier to read. Writing a simple generic class is

quite straightforward, and creating objects of generic types

is as well. You should also be able to read the documentation

of simple generic types, such as the List interface’s Javadoc

page or the Javadoc page of the Collection interface.

However, the story does not end here. So far, I have ignored

some problems that arise with generics, and understand-

ing the mechanisms to solve them gets a little trickier. This

The use of generics
can make code safer and
easier to read.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/8/docs/api/java/util/List.html
https://docs.oracle.com/javase/8/docs/api/java/util/List.html

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

49

//new to java /

is where things become really interesting. Let’s look at the

problem irst.

Generics and Subtyping
Assume that you have a small inheritance hierarchy. To

model people in a university, you have classes Student and

Faculty, and a common superclass Person (Student and

Faculty are both subclasses of Person). So far, so good.

Now you also create types for lists of each of these:

List<Student>, List<Faculty>, and List<Person>.

The student and faculty lists are held in the parts of

your program that hold and process the student and fac-

ulty objects. The Person list type can be useful as a formal

parameter for a method that you want to use with both fac-

ulty and students, for example:

private void printList(List<Person> list)

The idea is that you want to be able to call printList with

both the student and faculty lists as actual parameters.

This will work if the types of these lists are subtypes of

List<Person>. But are they?

In other words, if Student is a subtype of Person, is then

List<Student> a subtype of List<Person>?

Intuitively, you might say yes. Unfortunately, the correct

answer is no.

You can see the problem when you imagine that the

printList method not only prints, but also modiies the
list passed as a parameter. Assume that this method inserts

an object of type Faculty into the list. (Because the list is

declared in the parameter as List<Person>, and Faculty

is a subtype of Person, this is perfectly legal.) However,

the actual list passed in to this method might have been a

List<Student>. Then, suddenly, a Faculty object has been

inserted into the student list! This is clearly a problem.

The only way to avoid this problem is to avoid consider-

ing lists of subtypes and lists of supertypes to be in a sub-

type/supertype relationship themselves. In other words,

List<Student> is not a subtype of List<Person>.

Conclusion
There are many situations in which you need subtyping with

generic types, such as the above attempt to deine the gen-

eralized printList method. You have seen that it does not

work with the constructs I have discussed so far, but just

saying it can’t be done is not good enough—you do need to be

able to write such code.

The solutions entail additional constructs for generics:

bounded types and wildcards. These concepts are powerful, but

have some rather tricky corner cases. I will discuss them in

the upcoming installment in the next issue of Java Magazine.

Until then, study the generic classes available in the Java

library—especially the collections—and get used to the

notation discussed in this article. I will dive deeper next

time! </article>

Michael Kölling is a Java Champion and a professor at the

University of Kent, England. He has published two Java textbooks

and numerous papers on object orientation and computing educa-

tion topics, and he is the lead developer of BlueJ and Greenfoot,

two educational programming environments. Kölling is also a

Distinguished Educator of the ACM.

Oracle’s Java tutorial on generics

Wikipedia article on Java generics

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/tutorial/java/generics/
https://en.wikipedia.org/wiki/Generics_in_Java

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

50

//jvm languages /

Ceylon is a modern statically typed JVM language, designed

for readability and maintainability, while at the same

time being expressive enough to allow eicient constructs
with very little boilerplate. People familiar with Java or C# will

have an easy time getting used to Ceylon because its syntax

is familiar.

When I joined the project (led by Gavin King and Red Hat)

almost ive years ago, I was blown away by its ideas and goals.
Finally, here was a new language made with the same philos-

ophy that I loved in Java when it was created: a new language

made to be familiar, yet more powerful, more expressive, with

higher-level abstractions, leading to less and clearer code. But

on top of that Ceylon also promised great tooling, a brand-

new modern SDK, and features (at the time) missing from my

other favorite language, Java—modularity, irst-class func-

tions, and reiied generics. And it promised to remove lots of
other frustrations.

Since that time, thanks to the many contributors who

joined the project, the Ceylon team has delivered on its

promises. Its irst production-ready release was completed
two years ago, with two new releases since then, and

improvements and new features keep coming steadily.

It is impossible to cover the entire language in this article,

so I highlight only a few important features to give you a

sense of the language.

About Modularity
Ceylon has featured a modular architecture from the start.

Every Ceylon package belongs to a module. If you declare your

module, you can import other modules. If you do not, your

code will be part of the default module. This code is what you

need to write to start a trivial “Hello World” web application:

module hello "1" {
 import ceylon.net "1.2.2";
}

shared void run() {
 // create the server
 value server = newServer {
 Endpoint {
 path = startsWith("/");
 service(Request request, Response response)
 => response.writeString("hello world");
 }
 };

 // start it on port 8080
 server.start(SocketAddress("127.0.0.1", 8080));
}

The module descriptor is simple: I’m declaring version 1 of a

module called hello, and I am importing the ceylon.net

STÉPHANE ÉPARDAUD

Ceylon Language: Say More,
More Clearly
A low-ceremony, high-productivity JVM language that integrates easily with Java
and also runs on JavaScript VMs

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

51

//jvm languages /

module from the Ceylon SDK.

The rest is the run function,

which creates a web server with a

single endpoint and starts it. The

shared annotation means that

this function is visible to clients

that can view its container pack-

age (note that in Ceylon, func-

tions can belong to packages, not

just to classes and interfaces). The

value keyword means “infer the

type of that value by looking at

the right side of the assignment.”

This greatly reduces verbosity

while remaining statically typed.

In Ceylon, functions can be

invoked either with parenthe-

ses and ordered arguments, as in

Java, or with curly braces, which allows you to specify argu-

ments by name (path and service, in this code). In this

case, the service argument is passed a trivial function that

writes hello world to the client.

Something unique to Ceylon is that out of the box, the tools

know how to compile and run this module. The IDE and even

the command-line version know how to deal with modules;

resolve and fetch dependencies; set up classpaths; compile

and package modules—locally or even to remote module

repositories; and all the tasks that other languages usually

need many tools to perform. This is all you need to do on the

command line to compile and run your module:

$ ceylon compile,run hello

The tools are smart enough that you don’t need build tools for

trivial matters.

When it comes to interoperability with other module sys-

tems, Ceylon modules include the necessary Maven and OSGi

(Open Service Gateway initiative) metadata (soon npm, too).

They even support the Java 9 Jigsaw project (although cur-

rently a lag is required to turn it on), because Ceylon already
supports Java 9 modules. On JavaScript, Ceylon modules are

compatible with the Require.js module system.

Thanks to modularity, the Ceylon distribution ships with

only the ceylon.language module, which contains the basic

Ceylon types; functions; and the metamodel, which is pretty

small. Modules from the SDK are automatically obtained from

online repositories when they are imported, and they are

cached locally thereafter.

A Novel Friendly Type System
Ceylon features a powerful type system based on the follow-

ing parts:
■■ Most types will be inferred (you’ve already seen this with

the value declaration).
■■ For low typing, once you have checked that a value is of a

certain type or is not null, the type checker will remember

it and allow you to treat it as such.
■■ The type of null and of object values should be distinct.

An Object can never be null, and its type is distinct from

Null (the type of null).
■■ Union types allow you to specify that a value should be of

one of several types. For example, you can say that a value

is of type String or of type Null with the String|Null

union type. You can access members common to both

types, or narrow the type to one of the cases with low
typing: if(is String foo) then foo.lowercased

else "<null>".
■■ Intersection types let you describe a value that should

inherit from several types. An object of type Appendable
& Closeable will be guaranteed to have all methods of

each interface, no matter if it is a File or a Logger.

These features, along with some syntax sugar, allow you to

Ceylon compiles
to both Java
bytecode and
JavaScript. This
multiplatform support
enables you to run
Ceylon programs not
just on the JVMs you
are used to, but also on
browsers and Node.js
virtual machines.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://ceylon-lang.org/documentation/ide/

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

52

//jvm languages /

prevent NullPointerExceptions in Ceylon. If you have a

value of type String, it cannot be null. If you have a value of

type String|Null (sugared as String?), you cannot access

its members until you have used low typing to ascertain its
existence. (In Ceylon, existence refers to whether a data item is

non-null as determined by using the exists predicate.)

Optional Parameters
There are many great reasons to love Java. However, one fea-

ture I miss is the lack of optional parameters. Consider this

Java code:

void log(String message){
 log(message, Priority.INFO);
}
void log(String message, Priority priority){
 log(message, priority, null);
}
void log(String message, Priority priority,
 Exception exception){
 ...
}

log("foo");
log("bar", debug);
// ouch, need to know the default
// value of "priority"
log("gee", info, x);

The corresponding code in Ceylon is this:

void log(String message, Priority priority = info,
 Exception? exception = null){
}

log("foo");
log("bar", debug);
log{
 exception = x;

 message = "gee";
};

Ceylon also does away with the verbosity of ield and Java
bean property accessors with a single attribute construct that

can be inal or dynamic:

class Counter(){
 // starts at zero, does not change on access
 shared variable Integer count = 0;
 // increments count every time it is accessed
 shared Integer increase => ++count;
}

// no need for "new":
// classes are functions in Ceylon
value counter = Counter();
print(counter.count); // 0
print(counter.increase); // 1
print(counter.count); // 1

There are many such examples of common Java itches that

Ceylon scratches—and I haven’t even talked about how awe-

some function types are.

The Ceylon SDK and Interoperability with
Other Languages
Ceylon compiles to both Java bytecode and JavaScript (a Dart

back end is nearing completion, too). This multiplatform

support enables you to run Ceylon programs not just on the

JVMs you are used to, but also on browsers and Node.js virtual

machines (VMs). Once you have learned the Ceylon language

(which was designed to be easy to learn), you can reuse that

knowledge in your web applications on both the front and

back ends.

Even better, you’re not limited by what APIs you ind in
a particular back end. When running on the JVM, you have

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

53

//jvm languages /

excellent interoperability with every library out there: not

just the JDK, but also every OSGi and Maven module. (Ceylon

also knows how to resolve Maven modules from the Maven

central repository.) People have run Ceylon code interacting

with Spring, WildFly, Vert.x, and even Apache Spark (written
in Scala). When compiled for the JVM, Ceylon produces idio-

matic Java APIs that adhere to conventions (JavaBeans, for
example) in most cases, which makes interoperability from

Java to Ceylon easy.

When running on JavaScript VMs, you can easily access

whatever APIs your browser provides, by using dynamic

blocks, which relax the type checker to access untyped APIs.
At the moment, the Ceylon team is working on npm integra-

tion (allowing you to use npm modules and publish to npm

repositories) and on TypeScript interfacing, so that you can

provide a typed interface to many JavaScript APIs, such as the
DOM and browser APIs.

If you want to write libraries that work on both JVM and

JavaScript VMs, though, interoperability is not always enough

(although it is possible to write a module that delegates to

diferent interoperability code depending on the back end). If
you had to limit yourself to the JDK for collections, or to the

corresponding Node.js module, you would never be able to

write portable Ceylon modules. For that reason, Ceylon comes

with a full-ledged modern SDK containing most of what you
need to write portable Ceylon applications.

Ceylon runs out of the box on OpenShift, Vert.x (where you

can even write your verticles in Ceylon), WildFly (produce a

WAR ile from your Ceylon modules with the ceylon war

command), and OSGi environments, or simply from the java

command line.

Additionally, because the Ceylon JVM back end is based on
the Java compiler (javac), it can compile both Java and Ceylon

source iles at the same time, allowing parts of your project to
be written in both languages.

Reified Generics
When using generics in languages that erase type-argument

information at compile time (that is, languages such as Java

without reiied generics), it is often frustrating that all this
information is lost at runtime. For example, you cannot

use those type arguments anymore to reason about them.

Without reiied generics, you cannot ask if a value is of an
argument’s type, or use introspection on that type argument.

For example, the following code can only be implemented in

languages that have reiied generics, such as Ceylon:

shared ObjectArray<T> toArray<T>(List<T> list){
 // if you have a List<Foo>, you create a
 //JVM array of Foo[], not just Object[]
 value ret = ObjectArray<T>(list.size);
 variable value x = 0;
 for(elem in list){
 ret.set(x++, elem);
 }
 return ret;
}

Nor is it possible to write the following without reiied
generics:

shared List<Subtype>
 narrow<Type,Subtype>(List<Type> origin)
 given SubType extends Type {

 value ret = ArrayList<Subtype>(origin.size);
 for(elem in origin){
 // Here we can check that the run-time
 // type is an instance of Subtype, which
 // is a type parameter
 if(is Subtype elem){
 ret.add(elem);
 }
 }
 return ret;

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

54

//jvm languages /

}

Or to write this more simply using a comprehension, which in

Ceylon is a way to declare Iterable literals whose elements

are generated by procedural code:

shared List<Subtype>
 narrow<Type,Subtype>(List<Type> origin)
 given SubType extends Type {
 // return an ArrayList whose elements
 // consist of every element of origin
 // that is an instance of Subtype
 return ArrayList<Subtype>{
 for (elem in origin)
 if (is Subtype elem)
 elem
 };
}

Metamodel
Ceylon also features a metamodel, which enables you to

inspect all running modules, their packages, and their mem-

bers (types, functions, and values), optionally iltered by
annotation. This is very useful when creating frameworks.

In order to point a framework to your packages, modules,

or types, you can even use metamodel literals, which are

similar to Foo.class literals in Java, except they can point

to any element of the Ceylon program. For example, here is

how you can scan the current package for Java Persistence

API (JPA) entities:

shared SessionFactory
 createSessionFactory(Package modelPackage){
 value cfg = Configuration();
 for (klass in modelPackage
 .annotatedMembers<ClassDeclaration,
 Entity>()) {
 cfg.addAnnotatedClass(

 javaClassFromDeclaration(klass));
 }
 return cfg.buildSessionFactory();
}

value s = createSessionFactory('package');

Good Tooling
Ceylon tooling does an excellent job, and many tools designed

for Ceylon will make development easier. The irst tool is the
Ceylon IDE for Eclipse, which is a full-featured IDE for Ceylon

with interoperability with Eclipse Java development tools.

This IDE is what I use every day to develop Ceylon modules. It

is very solid and supports more refactorings, quick ixes, and
features than the Eclipse Java plugin. Naturally, like the rest

of the Ceylon tools, it knows how to deal with modules and

module repositories, because they are irst-class citizens of
the language.

In a few months, the Ceylon team will release the irst ver-

sion of the Ceylon IDE for IntelliJ IDEA. The team has been
abstracting all the Eclipse plugin code into an IDE-agnostic

module for the last few months, rewriting it in Ceylon at the

same time, so that it can be used in both IntelliJ and Eclipse

without having to maintain quick ixes and refactorings for
both platforms. In the end, most of both IDEs will be writ-

ten in Ceylon—a task for which the easy interoperability with

Java helps a lot.

If you just want to try Ceylon without installing anything,

there is a great Ceylon web IDE. It features several code

examples and will let you write your own code, too, and it

provides code completion, error markers, and documentation.

So don’t hesitate to throw your Ceylon code at it until you

need a full-ledged IDE.
The other programmer’s best friend is the command line.

Ceylon has an extensive command line, inspired by Git,

with a single ceylon command, from which you can dis-

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://try.ceylon-lang.org

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

55

//jvm languages /

cover every other subcommand via completion or via the

--help argument. With it, you can compile and run on

both back ends, document your modules, list available ver-

sions of a module, search for modules, copy modules or

module repositories, and even package and install new

command-line plugins.

For example, if you want to install and use the ceylon

format command, just type:

$ ceylon plugin install ceylon.formatter/1.2.2
now you can use it!
$ ceylon format ...

The Ceylon API documentation generator outputs beautiful,
usable documentation, as you can observe from the language

module documentation online. One of the features I like most

is the ability to search and navigate results from the keyboard

by typing s, searching, and then using the keyboard arrows.

Try it!

The Ceylon distribution ships with Ant plugins for all
standard command-line subcommands. Maven and Gradle

plugins for Ceylon have been written by the community and

are available, too, in case you want to include Ceylon as part

of an existing Java application.

As your Ceylon modules mature, they can graduate from
your computer to Herd: the online module repository for

Ceylon. This open source web application functions as the

central repository for every public Ceylon module. This is

where you will ind the Ceylon SDK, for example (it does not
need to be bundled with the distribution). Anyone can have
an account on Herd to publish modules, but if you want pri-

vate deployments, you can also download the web appli-

cation and run your own instance of it. By default, Ceylon

tools attempt to fetch modules from the Herd repository

if they cannot be found locally, but it’s very easy to add

other repositories.

Since the release of version 1.2.2, you can also ship a

Ceylon autoinstaller with your projects. This installer uses

the ceylon bootstrap command, which functions like the

famous Gradle Wrapper, gradlew: it is a very small library

that autoinstalls the right version of Ceylon for users who do

not have it installed locally.

Conclusion
It is impossible to cover the entire language and ecosystem

in one article. But if this introduction has made you curious,

check out a good tour of Ceylon online.

Ceylon 1.0 was released two years ago. Ceylon is now at the

mature version of 1.2.2, with a release cycle of around two

or three months, to bring you bug ixes and features as fast
as possible. The team has already merged two big feature

branches bringing support for writing Android applications
in Ceylon, as well as rebasing the JVM back end on the Java 8

compiler, which allows you to produce Java 8 bytecode on top

of the existing Java 7 bytecode that Ceylon already supports.

Join the friendly Ceylon community online and feel free to

post your questions. </article>

From deep in the mountains of Nice, France, Stéphane Épardaud

(@UnFroMage) works for Red Hat on the Ceylon project, including

the JVM compiler back end, various SDK modules, and the Herd

module repository. He is a frequent speaker and is the co-lead of

the Riviera Java User Group.

The oicial, in-depth tour of Ceylon

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://modules.ceylon-lang.org/repo/1/ceylon/language/1.2.2/module-doc/api/index.html
https://herd.ceylon-lang.org
https://herd.ceylon-lang.org
http://ceylon-lang.org/documentation/1.2/tour
http://ceylon-lang.org/community
http://ceylon-lang.org/documentation/1.2/tour/

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

56

//fix this /

T
rusting that you’re inding value in quiz questions with
complete and detailed explanations of the answers, I’ve

put together more interesting problems that simulate ques-

tions from the 1Z0-809 Programmer II exam.

Question 1. Given that the following methods are deined in
an enclosing class called Fruit, which has the ields that
support these method deinitions, which pair of equals and
hashCode methods work together correctly to support the use
of Fruit objects in collections? Choose two.

Note: The Objects class is a core Java SE utility class that
provides null-safe convenience methods that work as their
names suggest.

a.
public boolean equals(Fruit other) {
 if (other == null) return false;
 if (!Objects.equals(name, other.name))
 return false;
 if (!Objects.equals(color, other.color))
 return false;
 return true;

}

b.
public final boolean equals(Object o) {
 if (o == null) return false;
 if (!(o instanceof Fruit)) return false;
 final Fruit other = (Fruit) o;
 if (!Objects.equals(name, other.name))
 return false;
 if (!Objects.equals(color, other.color))
 return false;
 return true;

}

Quiz Yourself
More questions from an author of the Java certification tests

c.
public long hashCode() {
 long hash = 7L;
 hash = 47 * hash + Objects.hashCode(name);
 hash = 47 * hash + Objects.hashCode(color);
 return hash;

}

d.
public int hashCode() {
 return Objects.hashCode(name);

}

e.
public int hashCode() {
 int hash = 7;
 hash = 47 * hash + Objects.hashCode(name);
 hash = 47 * hash + Objects.hashCode(color);
 hash = 47 * hash + this.weight;
 return hash;
}

Question 2. Given this:
Set<Fee> sf = new TreeSet<>();

Which of the following is required of Fee if the set is to behave
properly? Choose one.

a. Fee must override the equals method of Object.

b. Fee must override the hashCode method of Object.

c. Fee must implement Cloneable.

d. Fee must implement Comparable<Fee>.

e. Fee must implement Comparator<Fee>.

SIMON ROBERTS

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

57

//ix this /

Question 3. Given this code:
public class Goat {
 public static String getIt(String a, String b) {
 return "Hello " + a + " " + b;
 }
 public String getIt(Goat a, String b) {
 return "Goodbye " + a + " " + b;
 }
 public String getIt() { return "Goated! "; }
 public String getIt(String b) {
 return "Really " + b + "!"; }

 public static <E extends CharSequence>
 void show(BinaryOperator<E> op, E e1, E e2) {
 System.out.println("> " + op.apply(e1, e2));
 }
 public static <E extends Goat, F>
 void show(Function<E, F> op, E e, F f) {
 System.out.println(">> " + op.apply(e) + f);
 }
 public String toString() { return "Goat"; }

 public static void main(String[] args) {
 show(Goat::getIt, new Goat(), "baaa");
 }

}

What is the result? Choose one.
a. > Hello Goat baaa

b. > Goodbye Goat baaa
c. >> Goodbye Goat baaa
d. >> Goated! baaa
e. >> Really baaa!

Question 1. The correct answers are options B and D. This
question delves into the meaning of equality and the nature
of hashCode. Let’s consider the matter of equality irst. This
seemingly simple notion can get quite complicated and trou-

blesome in an object-oriented language.
First, let’s ind an equals method. To choose between

options A and B, we can look at the argument types. The
equals method is deined in the Object class, and the
argument type is Object. An equals method such as is
deined in option A, which takes another argument type,
is an overload of the equals name, not an override of the
equals(Object) method. Because of this, option A is incor-

rect, and option B must be the equals method we select.
Now let’s consider the hashCode behavior that pairs cor-

rectly with this equals test. This method, also deined in
Object, must return an int, and so we can reject option
C, which returns a long. Now we have to choose between
Options D and E. We can see that our chosen equals method
(actually, either of them) tests the contents of name and
color in determining equality, but the two hashCode meth-

ods we must choose between difer in this respect: option D
considers only name, while option E considers name, color,
and weight.

The requirement for a hashCode method is that if two
objects, a and b, test as being equal using the equals method,
then the hashCode values of each must be the same. That is,
if a.equals(b), then a.hashCode() == b.hashCode()

must be true. Importantly, however, the inverse is not
required. That is, just because two objects return false when
tested with equals does not require diferent hashCode

Answers

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

58

//ix this /

values. Certainly it’s better (from a performance perspective)
if they are in fact diferent, but that’s not required for correct-
ness. It’s interesting to note that it’s both legal and function-

ally correct to deine a hashCode method that simply returns
the value 1. Doing so would result in the performance of all
hash-based data structures containing such an object degen-

erating to the performance of something such as a linked list,
but the containers would still work correctly.

So, our hashCode is not required to consider all the ields
considered by the equality test, but it absolutely must not
consider ields that are not part of the equality test. Because
of this, we can reject option E, which considers the weight

ield, and we’re left with the correct answer being option D,
even though it might produce a suboptimal hash value.

By the way, failing to test all the relevant elements in a
hashCode method is not just an esoteric laziness for the sake
of asking “tricky” questions. The purpose of hashCode is to

speed up searching, and sometimes a less choosy hashCode

implementation that works faster might be preferable to a
more discriminating method that takes longer to execute. In
fact, the early versions of java.lang.String took exactly
this approach.

Before we leave this question, let’s consider a couple
more points about the equality. Why did the equality test
not have to consider weight, if that ield exists? Where
structured data types are concerned equality is, to some
extent, a domain-speciic concept. Imagine, for example,
an implementation of a class similar in function to the
StringBuilder. It’s likely that this class would contain an
array of characters holding the text and an integer indicating
how many of the characters are part of the text. In this way,
it’s not necessary to resize the array every time the length of
the text changes. But this also means that most of the time
some of the characters in the array are not part of the text
being represented, and they should not be considered in an
equality comparison.

For example, consider two such structures. One initially
contains "Hello world!" and the other contains "Hello
father" and both have a length value of 12. Clearly at this
point, they’re not equal to one another. But if we truncate
both to a length of 5, the character arrays still contain the
same characters as before—that is, the two arrays contain
dissimilar values—but the diferences are irrelevant because
the two objects now both represent "Hello" and should
compare as equal.

From this, we can see that it’s totally proper for an equals

method to ignore some ields in an object.
In fact, equality testing is even more complicated when

inheritance rears its head in object-oriented languages. Is
a TruckTire of the same size “equal to” a regular Tire?
All kinds of problems can arise here. Anyway, imagine that
we have class A, that class B extends A, and that we have
instances of these called a and b. Then if class B overrides the
deinition of equals in class A, b.equals(a) uses diferent
behavior from a.equals(b). That’s very dangerous, because
it allows the possibility that b.equals(a) could be false
when a.equals(b) is true. That in turn breaks the relexive
property that is expected for equality and can result in very
strange bugs. As a result, it’s not unreasonable to deine an
equals method as final, even if the class itself is not.

For a very succinct listing of requirements, see the oicial
documentation for equals and hashCode. If you want more
discussion on these issues, with practical code-level advice
on addressing the complex problems, take a look at the book
Efective Java by Joshua Bloch.
Question 2. The correct answer is option D. This answer is
perhaps a little surprising, but that’s what makes it inter-

esting. The basic behavior of a set is that it is an unordered
collection that does not permit duplicates. The normal
expectation in Java is that duplicates will be detected using
the equals method of the objects, which suggests that the
answer would be option A.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#equals-java.lang.Object
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

59

//ix this /

Meanwhile, a tree is a structure that depends on ordering. A
set difers from a list in that the list should respect the order
deined by the user of the list; but a set may use any internal
order it likes, including one designed to allow inding items
more quickly. That’s exactly what a TreeSet does. Of course,
if we’re ordering the items to facilitate inding them, then
some kind of ordering must exist for the objects in the set.

There are two ways this ordering can be provided. One
option is that an external Comparator can be given to the
TreeSet when it’s created (which isn’t an option for this
question, because no such argument is provided in the setup
code). The other option is that the object itself must imple-

ment Comparable so that it has what the Java documentation
refers to as a “natural order.” In this case, that means that
option D is the correct answer.

Now, because the question permits only one answer, it
might seem that we have a problem. Doesn’t the Fee class
also have to implement equals (and probably hashCode)
to work properly? It turns out that the compareTo method,
declared in the Comparable interface, can represent equality
of a kind. The return from compareTo is an int value, with
positive and negative results indicating that the argument
value is ordered after or before the this value.

However, a return of zero from compareTo means that

the two values being tested are at the same position in the
ordering, and that’s a form of equality. Indeed, if you think
about this, you’ll see that if the compareTo method says two
objects are at the same point in the ordering, but they’re not
equal, we have a problem. We certainly don’t know what to do
with such values in a tree structure. To address the potential
confusion in the general case, the documentation discusses
the idea that a compareTo might be “consistent with equals”

or not consistent (and strongly recommends that ordering
be consistent with equals, but acknowledges that this is

often impossible).
To resolve the ambiguity, the TreeSet documentation

explicitly states that the equals method will not be used;
the only comparisons will be done using the compareTo

behavior. So, the only answer is in fact option D. Clone, of
course, is a meaningless space iller in this case, because
duplicating an object has nothing to do with being able to
store it in a collection.

It’s interesting to ask whether this would be a fair exam
question. Should you have to learn this much about an API
when you can look it up? To be fair, the exam writers prob-

ably would be a bit circumspect about a question that seems
to depend on this much API detail (which is not to say such
detail will not be asked, just that there won’t be many ques-

tions depending on such knowledge). However, this particu-

lar answer can be worked out from an understanding of the
meaning of a set, tree, and Comparable. You are expected to
understand these things, and so answering the question does
not, despite initial appearances, depend on rote learning, and
is almost certainly valid. Here, I hope the question proved
interesting and instructive. In a real exam, don’t hesitate to
use logic and understanding to eliminate items, or to deter-

mine that—as in this case—one particular answer is sui-

cient or “better.”
Question 3. The correct answer is option D. There are two
things that must be determined to decide how this code
behaves. First, which show method will be executed? One of
the methods takes three arguments that are constrained by
the generics mechanism to be, for any given type variable E

that extends CharSequence, a BinaryOperator<E> and two
more parameters of the same type E. Because we call show

with a method reference, a Goat, and a String, it should be
clear that this cannot be the target method because Goat

does not implement CharSequence.

The second show method also takes three arguments. The
irst is a Function that takes a Goat-like thing (that’s the
<E extends Goat... part) and returns something else.
The second argument is also a Goat-like thing, and the

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

60

//ix this /

third is something else. This second show method then
is the valid target of the call in the main method, and it
tells us that the method reference must be formed into a
Function<Goat-like, String>. That information tells us
that the output must begin with >>, eliminating options A
and B, and it is important for the next step in deducing the
behavior, too.

So, how does the method reference get converted into a
lambda that invokes one of the four getIt methods deined
in this question? There are four distinct forms of method
reference. These four forms invoke static methods, instance
methods on objects deined in the method reference, instance
methods on objects extracted from the lambda argument list,
or a constructor. We can rule out the constructor version here,
because the method reference uses the name getIt, not new.

If we have a method reference of the form ClassName::
methodName, then it can create a lambda of the form
(a,b,c) -> d if the class ClassName has a static method
that takes three arguments that are compatible with the
lambda’s formal parameters (a, b, and c) and the static
method has a return type that matches the return required
for the lambda. In this question, we’re trying to create a
lambda that implements Function<Goat-like, String>.

That would require a static method that takes a Goat-like
argument and returns a String. The only static getIt

method takes two String arguments, so it cannot be applied
in this case. That allows us to reject option A (which, of
course, we already rejected, because it has only a single > at

the beginning).
If we had a method reference of the form aGoatInstance::

getIt, we’d have an exactly parallel discussion about param-

eter mapping as for the static case, but searching for a com-

patible instance method. The method would be invoked on
the instance aGoatInstance. However, that’s not the form
of the method reference, so we don’t have to pursue that
thought process.

The third possibility is that the method reference might
translate into a lambda that’s implemented using an instance
method like this:

SomeClass::aMethod implementing Function<A,B>
becomes (a)->a.aMethod()

In this situation, the input type to the function must be the
type that precedes the double colon (Goat-like, in our ques-

tion), and the return type of the method being referred to
becomes the return type of the lambda (String). These types
must be compatible with what the lambda must fulill. In this
case, we would need to make this translation:

Goat::getIt becomes (Goat a) -> a.getIt()

And the return type of getIt must be String. That’s the

one that returns Goated! and, therefore, option D is the
correct answer. </article>

Simon Roberts joined Sun Microsystems in time to teach Sun’s

irst Java classes in the UK. He created the Sun Certiied Java

Programmer and Sun Certiied Java Developer exams. He wrote

several Java certiication guides and is currently a freelance edu-

cator who teaches at many large companies in Silicon Valley and

around the world. He remains involved with Oracle’s Java certiica-

tion projects.

Javadoc for Comparable

Oracle tutorial on Comparable and comparators

Introduction to Java 8 lambdas by Cay Horstmann

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/tutorial/collections/interfaces/order.html
http://www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

61

//cloud /

The Java cloud market is evolving quickly. Many vendors

ofer myriad cloud products and a lot of new terminology
and jargon to go with them. In their early days, cloud solutions
were mostly lightweight slivers of traditional server solutions.
But today, we have pretty much all the functionality of large
server-side products—often split into many specialized cloud
solutions. This model comes with the beneit that developers
are able to pick and choose enterprise options, and use only
what’s required.

Cloud solutions are commonly classiied as follows:
■■ IaaS. Infrastructure as a service, or basic virtualized hard-

ware and an operating system
■■ PaaS. Platform as a service, or IaaS with additional services,

such as a database
■■ SaaS. Software as a service, or full applications on top of a

PaaS stack
Within these categories, there are dozens of specialized cloud
solutions. For example, Oracle ofers many diferent cloud
services in each of these categories. While at irst this might
appear overwhelming, the good news is that almost all cloud
solutions are not “new” technology as such, which would
require an understanding of new core technology. The chal-
lenge is more about getting accustomed to new interfaces,
worklows, and terminology.

In this article, I explain what Oracle Java Cloud Service is
and how to get onboard.

Oracle Java Cloud Service and Variants
Oracle Java Cloud Service began life a few years ago as a
shared PaaS environment that ofered support for commonly
used Java EE technologies. Back then, it did not ofer any ine
control over the environment or the ability to tweak and cus-

tomize based on requirements.
My previous Java cloud articles in Java Magazine (“Hands

On with Oracle Java Cloud Service,” September/October 2013,
and “Build with NetBeans IDE, Deploy to Oracle Java Cloud
Service,” May/June 2014) discussed earlier versions of Oracle
Java Cloud Service. Since then, Oracle has signiicantly
enhanced its Oracle Java Cloud Service solutions.

Today, Oracle has the following three Oracle Java Cloud
Service oferings:
Oracle Java Cloud Service - SaaS Extension. This is the Oracle
Java Cloud Service ofering that has been available the lon-

gest. It was renamed with SaaS Extension appended after the
other two cloud services were launched.

As the name suggests, the primary use case this solution
addresses is that of an Oracle SaaS user who needs to extend
the capabilities of a SaaS ofering. Because Oracle Java Cloud
Service - SaaS Extension is primarily designed for this pur-

pose, it ofers easy integration with Oracle’s SaaS solutions.
Note that although the name includes SaaS Extension, noth-

ing in the product restricts you from deploying a standalone
Java EE application that is not an extension of a SaaS cloud.

HARSHAD OAK

Getting Onboard
Oracle Java Cloud Service
A hands-on, step-by-step guide to trying out an enterprise cloud

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

62

//cloud /

Oracle Java Cloud Service - SaaS
Extension provides a shared PaaS
environment where you can easily
deploy Java EE applications with-

out having to worry about any of the
underlying hardware setup, server
installations, patching, management,
and more. Oracle Java Cloud Service
- SaaS Extension supports all the
commonly used Java EE technologies

such as servlets, JavaServer Pages,
JavaServer Faces, and Enterprise
JavaBeans. It supports JAX-WS and
REST web services. It also supports
Oracle Application Development
Framework, which is widely used
among Oracle developers. It has most
of the things Java EE applications require and is certainly a
solution to consider when you are looking for a no-hassle,
out-of-the-box shared PaaS environment for Java EE.

Oracle Java Cloud Service - SaaS Extension does not let
you conigure the application server, the JVM, or the operat-
ing system to your exact requirements. This can work as an
advantage in cases where the user does not want to be both-

ered by those things. However, in some enterprise applica-

tions, especially, greater control might be desired. Enter
Oracle Java Cloud Service and Oracle Java Cloud Service -
Virtual Image.
Oracle Java Cloud Service. The primary diferentiator for
Oracle Java Cloud Service is that you can use the self-service
portal to easily provision your environment to best suit your
requirements. You also have control of the underlying infra-

structure and can choose Oracle WebLogic Server, memory,
clustering, load balancing, virtual machines, and more. Set-
ting up Oracle Java Cloud Service involves a lot more work
and decision-making than Oracle Java Cloud Service - SaaS

Extension, but you can get exactly what you require, and
also have the freedom to further tweak things if needed in
the future.
Oracle Java Cloud Service - Virtual Image. Oracle Java Cloud
Service - Virtual Image is a similar environment to Oracle
Java Cloud Service and also ofers control over many
aspects of the underlying environment. Oracle Java Cloud
Service - Virtual Image is designed for use in development
and testing, so it does not support backup and restoration,
patching, or scaling. Setting it up is a little simpler because it
has fewer prerequisites than does Oracle Java Cloud Service.

Note: The similar names of these cloud solutions can be
somewhat confusing. So in the rest of the article, I treat these
as three distinct products; notice carefully which one I am
referring to in a particular context.

Getting Started with Oracle Java Cloud Service
Let’s look at how to conigure and provision a new Oracle
Java Cloud Service instance. The irst step is to request a free
trial. Full-featured 30-day trials for Oracle Java Cloud Service
and Oracle Java Cloud Service - SaaS Extension are currently
available. I examine Oracle Java Cloud Service here.

Once your trial is approved, you ill out forms to set up your
identity domain and login credentials. The identity domain

is used to control the authentication, authorization, and fea-

tures available to users. Users in an identity domain can be
granted diferent levels of access to diferent cloud services.
Once that has been set up, you can get down to provisioning
the environment.

Log in to Oracle Cloud by entering your identity domain
and login credentials. You will see a dashboard listing all
services. As shown in Figure 1, you can use the drop-downs
to show only particular services in a particular identity
domain. In this case, I have marked a few services as favor-

ites by clicking on the star icon and then only displayed those
favorite services.

The primary
diferentiator
for Oracle Java
Cloud Service is
that you can use the
self-service portal
to easily provision
your environment
to best suit your
requirements.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://cloud.oracle.com/en_US/java
https://cloud.oracle.com/en_US/java

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

63

//cloud /

[Due to size constraints, other large images in this article
are provided as links/downloads, which allows the images to
be viewed at full size. —Ed.] Click the Service Console link for
Oracle Java Cloud Service, and you will get to a welcome page
for Oracle Java Cloud Service. Click the Services link (Figure 2)

on that page to set up prerequisites.

The prerequisites are a Secure Shell (SSH) public/private
key, an active Oracle Storage Cloud Service, and an active
Oracle Database Cloud Service. The Oracle Java Cloud Service
trial includes the trial versions of the other cloud services on
which it depends, so you don’t need to request any additional
trials. Let’s look at these prerequisites in more detail.

SSH Public/Private Key
Oracle Java Cloud Service requires an SSH public/private key
pair for authenticating, so you need to generate one. I used
the PuTTYgen tool (Windows .exe) to generate the key pair,
but there are alternative ways as well. The public key is also
required when provisioning Oracle Database Cloud Service
and Oracle Java Cloud Service.

Oracle Storage Cloud Service
Oracle Storage Cloud Service ofers a secure and scalable
storage capability. Oracle Java Cloud Service requires Oracle
Storage Cloud Service as it stores backups of service instances
to a container in Oracle Storage Cloud Service.

You can see in Figure 1 that Replication Policy Not Set is

highlighted against Oracle Storage Cloud Service. So irst,
you need to set a replication policy for Oracle Storage Cloud
Service by clicking the Set Replication Policy link. For faster

Figure 1. Configuration dashboard Figure 3. Storage replication policy

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://bitbucket.org/javamagazine/magdownloads/downloads/2016-05-Oak-Fig02-CreateJavaCloudService.png
https://goo.gl/95u5aY
https://winscp.net/download/puttygen.exe

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

64

//cloud /

data transfers during replication, I recommend that you select
the same primary data center to host the Oracle cloud ser-

vices and Oracle Storage Cloud Service. Legal and security
requirements also need to be considered.

As shown in Figure 3, I selected the same primary data cen-

ter for Oracle Java Cloud Service.
Next, you need to create the required Oracle Storage Cloud

Service containers for Oracle Java Cloud Service and Oracle
Database Cloud Service. These containers can be created

using the REST API or a Java library.
Note: If you are using the Virtual Image option of both

Oracle Java Cloud Service and Oracle Database Cloud Service,
you do not need to create the Oracle Storage Cloud Service
containers. Because the Virtual Image is a development and
testing environment, you have the option of not using Oracle
Storage Cloud Service containers for backup and recovery.

Oracle Database Cloud Service
Oracle Java Cloud Service needs Oracle Database Cloud Service
to be working. So, before you can create the Oracle Java Cloud
Service instance, you need to irst create the Oracle Database
Cloud Service instance. Click the Service Console link for
Oracle Database Cloud Service, as shown in Figure 1. On the
following welcome page, click the Services link. You now get
to the page shown in Figure 4.

Click Create Service. Next
create Oracle Database Cloud
Service by selecting the
options for monthly billing and
Oracle Database 12c Enterprise
Edition on the Service Details

page, as shown in Figure 5. I
provided the service name
javamagDBWithStorage, the
description, and passwords. I
also provided the SSH public key

that I created earlier.
Note: If you are creating Oracle Database Cloud Service -

Virtual Image, you can select the backup destination as none,
so that you don’t need to also set up an Oracle Storage Cloud
Service container for Oracle Database Cloud Service backup
and restore.

Select the basic shape with 1 OCPU and 7.5 GB RAM. The
coniguration can go up to 16 OCPUs and 240 GB RAM. (OCPU

here stands for CPU capacity equivalent to one physical core
of an indeterminate Intel Xeon processor with hyperthread-

ing enabled.)
Click Next and conirm the details. In a few minutes, the

javamagDBWithStorage database is provisioned and run-

ning, as shown in Figure 6.

Oracle Java Cloud Service Details
Once the javamagDBWithStorage database is up and run-

ning, head back to the Oracle Java Cloud Service console,
as shown in Figure 2, and click Create Service. As shown
in Figure 7, select Oracle Java Cloud Service. Then select the
enterprise edition of the latest available version of Oracle
WebLogic Server.

On the Service Details page, as shown in Figure 8, select
the basic shape with 1 OCPU and 7.5 GB RAM, and specify
the Oracle Database Cloud Service coniguration and the
Oracle Storage Cloud Service coniguration for Backup and

Recovery Coniguration. Also specify the Oracle WebLogic
Server username and password and choose to deploy a
sample application.

Conirm the service information as shown in the summary
in Figure 9. In a few minutes, the Oracle Java Cloud Service
instance is provisioned and ready for use. Once that’s done,
you can use the instance of Oracle WebLogic Server similarly
to an on-premises Oracle WebLogic Server. You can also log
in to the Oracle WebLogic Administration Console to deploy
applications to Oracle Java Cloud Service.

Using Oracle Java
Cloud Service is
simple enough and
gets you scale and
the other benefits
that make the cloud a
compelling proposition.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://goo.gl/puW0gC
https://bitbucket.org/javamagazine/magdownloads/downloads/2016-05-Oak-Fig04-CreateDatabaseCloudService.png
https://bitbucket.org/javamagazine/magdownloads/downloads/2016-05-Oak-Fig05-javamagDBWithStorage.png
https://bitbucket.org/javamagazine/magdownloads/downloads/2016-05-Oak-Fig06-DBCloudInstances.png
https://bitbucket.org/javamagazine/magdownloads/downloads/2016-05-Oak-Fig07-Service%20Level.png
https://bitbucket.org/javamagazine/magdownloads/downloads/2016-05-Oak-Fig08-ServiceDetails.png
https://bitbucket.org/javamagazine/magdownloads/downloads/2016-05-Oak-Fig09-Confirmation.png

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

65

//cloud /

You now have Oracle Java Cloud Service set up, with an
enterprise Oracle WebLogic Server and a database on the
cloud. You also have backups and recovery set up on Oracle
Storage Cloud Service.

Conclusion
As this article has shown, using Oracle Java Cloud Service
is simple enough and gets you scale and the other beneits
that make the cloud a compelling proposition, especially for
enterprise applications.

The Java cloud space has matured rapidly over the past few
years. In its early days, many developers had concerns: “Can
the cloud be tweaked to get exactly what I want? Will the
cloud bring all the power and functionality that I am used
to getting from my on-premises server? Will it be lexible
enough for my business?” And so on. In my experience, the
newer Oracle Java Cloud Service solutions enable you to do all
that and more. </article>

Harshad Oak is a Java Champion and the founder of IndicThreads

and Rightrix Solutions. He is the author of Pro Jakarta Commons

(Apress, 2004) and has written several books on Java EE. Oak

has spoken at conferences in India, the United States, Sri Lanka,

Thailand, and China.

Oracle Developer Cloud Service

Oracle Managed Cloud Services

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://cloud.oracle.com/developer_service
http://www.oracle.com/us/solutions/cloud/managed-cloud-services/overview/index.html
http://www.oracle.com/java

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2016

66

//contact us /

Comments
We welcome your comments, correc-

tions, opinions on topics we’ve covered,

and any other thoughts you feel impor-

tant to share with us or our readers.

Unless you speciically tell us that your

correspondence is private, we reserve

the right to publish it in our Letters to

the Editor section.

Article Proposals
We welcome article proposals on all

topics regarding Java and other JVM

languages, as well as the JVM itself.

We also are interested in proposals for

articles on Java utilities (either open

source or those bundled with the JDK).

Finally, algorithms, unusual but useful

programming techniques, and most other

topics that hard-core Java programmers

would enjoy are of great interest to us,

too. Please contact us with your ideas

at javamag_us@oracle.com and we’ll

give you our thoughts on the topic and

send you our nifty writer guidelines,

which will give you more information

on preparing an article.

Customer Service
If you’re having trouble with your

subscription, please contact the

folks at java@halldata.com (phone

+1.847.763.9635), who will do

whatever they can to help.

Where?
Comments and article proposals should

be sent to our editor, Andrew Binstock,

at javamag_us@oracle.com.

While it will have no inluence on

our decision whether to publish your

article or letter, cookies and edible treats

will be gratefully accepted by our staf

at Java Magazine, Oracle Corporation,

500 Oracle Parkway, MS OPL 3A,

Redwood Shores, CA 94065, USA.

 Download area for code and

other items

 Java Magazine in Japanese

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
mailto:java%40halldata.com?subject=
mailto:javamag_us%40oracle.com?subject=
https://bitbucket.org/javamagazine/magdownloads/wiki/Home
https://bitbucket.org/javamagazine/magdownloads/wiki/Home
http://www.oracle.com/technetwork/jp/articles/java/overview/index.html

	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66
	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

	
	JavaMag_MJ16_pg00
	JavaMag_MJ16_pg1
	JavaMag_MJ16_pg2
	JavaMag_MJ16_pg3
	JavaMag_MJ16_pg4-5
	JavaMag_MJ16_pg6-8
	JavaMag_MJ16_pg9-10
	JavaMag_MJ16_pg11
	JavaMag_MJ16_pg12
	JavaMag_MJ16_pg13
	JavaMag_MJ16_pg14-19
	JavaMag_MJ16_pg20-25
	JavaMag_MJ16_pg26-29
	JavaMag_MJ16_pg30-37
	JavaMag_MJ16_pg38-44
	JavaMag_MJ16_pg45-49
	JavaMag_MJ16_pg50-55
	JavaMag_MJ16_pg56-60
	JavaMag_MJ16_pg61-65
	JavaMag_MJ16_pg66

