
NETBEANS’ FATE 03 | DESIGN PATTERNS IN JAVA 8 55 | CLOUD PROGRAMMING 63

JUNIT 5
EXTENSIONS

25
MUTATION
TESTING

43
RUNNING
TESTS FROM
JUNIT 4 AND 5

20
WHAT’S NEW
IN JUNIT 5?

14
KENT BECK ON
HIS EVOLVING
VIEWS OF
TESTING

36

NOVEMBER/DECEMBER 2016

JUnit 5
Arrives!

SPECIAL
ISSUE

ORACLE.COM/JAVAMAGAZINE

magazine

By and for the Java community

http://www.oracle.com/javamagazine

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

01

//table of contents /

COVER ART BY I-HUA CHEN

03
From the Editor
NetBeans Gets a New Life—

or Does It?

06
Letters to the Editor
Comments, questions, suggestions,

and kudos

07
Events
Upcoming Java conferences and events

11
JavaOne 2016
The news, the videos, and the

Duke’s Choice Awards

55
New to Java
Implementing Design
Patterns with Lambdas
By Raoul-Gabriel Urma, Mario Fusco,

and Alan Mycroft

Astute use of lambdas can greatly

reduce the complexity of implementing

standard coding patterns.

61
Community Participation
Contribute to Java
by Adopting a JSR
By Martijn Verburg

How to stand out in the community

by contributing to Java standards

63
Cloud
Getting Started with Agile
Java Development in the Cloud
By Shay Shmeltzer

Avoid endless setup with Oracle

Developer Cloud Service’s integrated Git,

build, deploy, code review, and project

management tools.

67
Fix This
By Simon Roberts

Our latest code quiz

54
Java Proposals of Interest
JSR 367: JSON Binding

73
User Groups
Istanbul JUG

74
Contact Us
Have a comment? Suggestion?

Want to submit an article proposal?

Here’s how.

By Mert Çalişkan

The long-awaited release of JUnit 5 is a

complete redesign with many useful additions.

20
PART 2:
USING JUNIT 5

By Mert Çalişkan

Integrating with build

tools and IDEs and

running JUnit 5 tests

with earlier versions

25
A DEEP DIVE
INTO JUNIT 5’S
EXTENSION MODEL

By Nicolai Parlog

The lowdown on how

JUnit runs tests and how

it interacts with libraries

and frameworks

36
INTERVIEW
WITH KENT BECK

By Andrew Binstock

The parent of JUnit and

creator of TDD discusses

programming and testing—

and how his views on

testing have evolved.

43
MUTATION TESTING:
AUTOMATE THE
SEARCH FOR
IMPERFECT TESTS

By Henry Coles

Locate incorrect and

incomplete unit tests

with pitest.

//table of contents /

14
PART 1: A FIRST
LOOK AT JUNIT 5

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

02

EDITORIAL

Editor in Chief
Andrew Binstock

Managing Editor
Claire Breen

Copy Editors
Karen Perkins, Jim Donahue

Technical Reviewer
Stephen Chin

DESIGN

Senior Creative Director
Francisco G Delgadillo

Design Director
Richard Merchán

Senior Designer
Arianna Pucherelli

Designer
Jaime Ferrand

Senior Production Manager
Sheila Brennan

Production Designer
Kathy Cygnarowicz

PUBLISHING

Publisher
Jennifer Hamilton +1.650.506.3794

Associate Publisher and Audience
Development Director
Karin Kinnear +1.650.506.1985

Audience Development Manager
Jennifer Kurtz

ADVERTISING SALES

Sales Director
Tom Cometa

Account Manager
Mark Makinney

Account Manager
Marcin Gamza

Advertising Sales Assistant
Cindy Elhaj +1.626.396.9400 x 201

Mailing-List Rentals
Contact your sales representative.

RESOURCES

Oracle Products
+1.800.367.8674 (US/Canada)

Oracle Services
+1.888.283.0591 (US)

ARTICLE SUBMISSION

If you are interested in submitting an article, please email the editors.

SUBSCRIPTION INFORMATION

Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE

java@halldata.com Phone +1.847.763.9635

PRIVACY

Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer
that your mailing address or email address not be included in this program, contact
Customer Service.

Copyright © 2016, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise

reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY

DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY

DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. Opinions

expressed by authors, editors, and interviewees—even if they are Oracle employees—do not necessarily reflect the views of Oracle.

The information is intended to outline our general product direction. It is intended for information purposes only, and may not

be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied

upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s

products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly and made available at no cost to qualified subscribers by

Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600.

ATMs, Smartcards, POS Terminals, Blu-ray Players,

Set Top Boxes, Multifunction Printers, PCs, Servers,

Routers, Switches, Parking Meters, Smart Meters,

Lottery Systems, Airplane Systems, IoT Gateways,

Programmable Logic Controllers, Optical Sensors,

Wireless M2M Modules, Access Control Systems,

Medical Devices, Building Controls, Automobiles…

#1 Development Platform

13 Billion
Devices Run Java

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:jennifer.hamilton%40oracle.com?subject=
mailto:karin.kinnear%40oracle.com?subject=
mailto:jennifer.s.kurtz%40oracle.com?subject=
mailto:tom.cometa%40oracle.com?subject=
mailto:mark.makinney%40sprocketmedia.com?subject=
mailto:marcin%40sprocketmedia.com?subject=
mailto:cindy%40sprocketmedia.com?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
mailto:java%40halldata.com?subject=
mailto:java%40halldata.com?subject=
http://oracle.com/java

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

03

//from the editor /

PHOTOGRAPH BY BOB ADLER/GETTY IMAGES

A t JavaOne this year, the NetBeans commu-

nity announced that the project was moving

from its longtime home at Oracle to the Apache

Software Foundation (ASF). In a history that

dates back some 20 years, this will be NetBeans’

ifth new home, showing the product’s remark-

able power of endurance. An important question

is whether working under the aegis of the ASF

will bring NetBeans new life and new aiciona-

dos, or whether it signals the inal chapter of a
storied lifeline.

As many readers know, NetBeans is one of

the four principal Java IDEs. The others are the

open source Eclipse from the Eclipse Foundation,

IntelliJ IDEA from JetBrains (consisting of an open

source version and a higher-end closed source

version), and JDeveloper (a free, closed source IDE

from Oracle). What few readers might know is

that NetBeans was the irst of these products—
beating Borland’s JBuilder by a year. (JDeveloper,

which was based on JBuilder, was next, followed

years later by Eclipse and IntelliJ.)

NetBeans became a popular Java IDE because

of several features, most especially the lightness

of its use. While competing products had a long

setup cycle for new projects and a comparatively

“heavy” feel, NetBeans was great for coding

on the ly and always felt light and responsive.
While it lacked some of its competitors’ code-

management features, it was the irst to ofer a
built-in execution proiler and, if I recall correctly,
the only one to include a small-scale J2EE server,

OC4J, to quickly test web projects locally. It was

also the irst IDE to ofer a top-quality Swing-

NetBeans Gets a New Life—or Does It?
The transition from Oracle to the Apache Software Foundation marks the

beginning of an uncertain new era for the Java IDE.

#developersrule

Start here:
developer.oracle.com

Oracle Cloud.

Built for modern app dev.

Built for you.

Oracle Cloud delivers

high-performance and

battle-tested platform

and infrastructure services

for the most demanding

Java apps.

Java in
the Cloud

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.developer.oracle.com

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

04

//from the editor /

based GUI-development tool,

called Matisse.

That’s a lot of quality to

come from what was originally

a student project at Charles

University in Prague. (The core

development team for NetBeans

has remained primarily based in

Prague, although marketing and

other functions have been based

at various times in the United

States and elsewhere.)

Eventually, NetBeans was

acquired by Sun, where it was

open sourced. And through the

2011 acquisition of Sun, NetBeans

became part of Oracle. At that

point, I was quite surprised to

read of Oracle’s commitment to

continue developing NetBeans.

After all, the company already

ofered JDeveloper for free and
sponsored Oracle-speciic pack-

ages and extensions for Eclipse.

But actually, Oracle did more

than just commit to supporting

the platform’s development and

promotion; it also began using

portions of NetBeans in its own

products, speciically JDeveloper
and VisualVM, and eventually

a variety of other development

tools. For this reason, even with

the move to the ASF, NetBeans

has secured a commitment from

Oracle to underwrite its develop-

ment for two more releases: the

upcoming 8.x version and the

9.0 release.

If you were to view NetBeans

purely as a programming envi-

ronment, its fate after Oracle’s

commitment expires would be

most uncertain. Although many

projects under the ASF aegis

have lourished (Maven, Hadoop,
Spark, and others), more than a

few projects have migrated to the

ASF only to die there. (See the

Apache Attic for a list of defunct

projects.) However, over the
years, NetBeans evolved from an

IDE into a platform consisting of

large-scale components that can

be assembled in diferent ways to
form desktop applications. This

architecture uses a rather dif-

ferent approach than Eclipse’s

OSGi-based system of modules

and bundles. (This page compares

the Eclipse and NetBeans archi-

tectures.) Numerous companies—
including Oracle—have exploited
the beneits of NetBeans’ archi-
tecture and built applications

whose runtime includes the

platform components.

These companies have an

interest in continuing the for-

ward direction of NetBeans, and

some have committed to work

on NetBeans in its new home.

I expect—but obviously I don’t
know—that they will contrib-

ute either directly or by engag-

ing NetBeans’ current cohort of

developers to continue develop-

ing the platform. In addition,

the community of users, many

of whom are truly dedicated to

NetBeans, might well step up and

begin contributing. It’s diicult
to project the extent of partici-

pation because very few projects

with so large a user base have

been migrated to the ASF, and so

there is little history to provide

guidance.

For users of NetBeans,

though, nothing need be done

for now or in the near term.

The 9.0 release is scheduled for

August 2017 and will cover Java 9.

By that time, we will surely have

more insight into the transition

of NetBeans, the level of activ-

ity, and the level of support from

both commercial users and the

developer community.

Andrew Binstock, Editor in Chief

javamag_us@oracle.com

@platypusguy

#developersrule

developer.oracle.com

Get on the list

for event updates:
go.oracle.com/oraclecoderoadshow

Step up to modern cloud

development. At the

Oracle Code roadshow,

expert developers lead

labs and sessions on PaaS,

Java, mobile, and more.

Level Up at
Oracle Code

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://attic.apache.org/
http://bit.ly/2ezJ4yC
https://wiki.apache.org/incubator/NetBeansProposal
mailto:javamag_us%40oracle.com?subject=
https://twitter.com/platypusguy
http://www.developer.oracle.com
https://go.oracle.com/oraclecoderoadshow

Java j
ust g

ot fa
ster.

..

Java j
ust g

ot fa
ster.

..

https://zeroturnaround.com/software/jrebel/trial/jrebel-tshirt-promo/?utm_source=javamag&medium=fullpage_november&utm_campaign=tshirtpromo

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

06

//letters to the editor /

Limited Language Choices
I enjoyed the Java Magazine article “Appreciating

Limited Choice in Languages” (September/October

2016), which discusses the beneits that Java enjoys
over other languages (such as C) in having a reason-

able amount of standardization. However, there’s
a problem: Oracle’s recommended style guidelines
for Java are hopelessly out of date—and have been
for years.

One huge indicator of this problem: The manual

on Java language style (which should be the bible
here) has not been updated since 1999.

The article says, “The convenience and beneits
of such strictures that ensure uniform syntax are

widely recognized.” I agree. So, when will Oracle

update the Java language style manual and ofer guid-

ance to developers and organizations?
—Alan Zeichick

Phoenix, AZ

Andrew Binstock responds: “I contacted the Java team to

get more detail on this. They told me that the document

you’re referring to was not posted as an attempt to codify

the language and therefore be a regularly updated docu-

ment. Rather, it was a set of internal coding guidelines

published in response to a community request. The team

suggested that the most normative examples of Java style

are those used in Oracle’s Java Tutorials.

“Most books available today on Java style were writ-

ten a long time ago, alas. A volume from 2014 that’s a

worthy reference is Java Coding Guidelines, by Fred Long

and a group of security experts. It not so much deines a
style as provides coding guidelines for writing secure code.

For my own use, when I need a full set of well-reasoned

Java coding guidelines, I generally turn to the Google

Java Style Guide.”

Regarding your editorial, Python dominates UNIX

installation and infrastructure. Talk about a language
needing “prescriptive” control!

—Richard Elkins
Dallas, TX

Back Issues Prior to 2015
I was reading something on the web that mentioned

an article in an older version of Java Magazine. How-

ever, when I look on the magazine home page it does
not show any issues before 2015. Is there any way to

access the back issues? Even if they’re just in PDF
format, that would be helpful.

—Michael Szela

Palatine, IL

Andrew Binstock responds: “We recently made the 2015

and 2016 back issues available for viewing on the web

and downloading as PDF iles. We plan to make the previ-
ous issues of Java Magazine available soon, most likely as

downloadable PDF iles for subscribers. We’ll announce the
availability of each year in the letter that goes out to sub-

scribers with each new issue of the magazine. We grate-

fully appreciate your patience.”

Contact Us
We welcome your comments and suggestions. Write

to us at javamag_us@oracle.com. For other ways to
reach us, see the last page of this issue.

SEPTEMBER/OCTOBER 2016

 JAX-RS 39 | JAVA INTERFACES 47 | FANTOM 53

Devices

and IoT

ORACLE.COM/JAVAMAGAZINE

magazine

By and for the Java community

IOT AND

THE CLOUD32

CONTROLLING

CNC ROUTING

FROM A

RASPBERRY PI

24

INTERACTING

WITH SENSORS14

SEPTEMBER/OCTOBER 2016

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2eyBvXd
http://bit.ly/2eyBvXd
https://docs.oracle.com/javase/tutorial/
http://amzn.to/2ewzJZs
http://bit.ly/2ef0qjA
http://bit.ly/2ef0qjA
mailto:javamag_us%40oracle.com?subject=

07

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

//events /

PHOTOGRAPH BY CHAS B/FLICKR

Jfokus FEBRUARY 6, UNIVERSITY DAY; FEBRUARY 7–8, CONFERENCE

STOCKHOLM, SWEDEN

Jfokus is the largest annual Java developer conference in Sweden.

Conference topics include Java SE and Java EE, continuous delivery and

DevOps, IoT, cloud and big data, trends, and JVM languages. This year,

the irst day of the event will include a VM Tech Summit, which is an
open technical collaboration among language designers, compiler writ-
ers, tool builders, runtime engineers, and VM architects. The schedule
will be divided equally between traditional presentations of 45 minutes
and informal, facilitated deep-dive discussion groups among smaller,
self-selected participants. Space is limited, as this summit is organized
around a single classroom-style room to support direct communication
between participants.

ArchConf
DECEMBER 12–15, 2016

CLEARWATER, FLORIDA

ArchConf is an educational

event for software archi-

tects, technical leaders, and

senior developers presented

by the No Fluf Just Stuf soft-
ware symposium. Among the
slated sessions are Modularity,

Microservices, and Modern

Architectural Paradigms, led
by Kirk Knoernschild, author of

Prentice-Hall’s Java Application

Architecture, and Cloud-Native

Application Architecture,

led by Matt Stine, author of

O’Reilly’s Migrating to Cloud-

Native Application Architectures.

DevConf.cz 2017
JANUARY 27–29

BRNO, CZECH REPUBLIC

DevConf.cz 2017 is a free
three-day open-source Fedora

Linux and JBoss community
conference for Red Hat and

community developers,
DevOps professionals, testers,

and documentation writers.
Set to be hosted at the Brno

University of Technology,

all talks, presentations, and

workshops will be conducted

in English. Several tracks are

usually devoted speciically to
Java EE, and the conference

can be attended online.

DevNexus
FEBRUARY 20–22

ATLANTA, GEORGIA

DevNexus is devoted to con-

necting developers from all
over the world, providing

afordable education, and pro-

moting open source values.
The 2017 conference will take
place at the Georgia World

Congress Center in down-

town Atlanta. Presenters will

include Josh Long, author of

O’Reilly’s upcoming Cloud

Native Java: Designing Resilient

Systems with Spring Boot, Spring

Cloud, and Cloud Foundry,

and Venkat Subramaniam,
author of Pragmatic’s
Functional Programming in Java:

Harnessing the Power of Java 8

Lambda Expressions.

Voxxed Days Zürich
FEBRUARY 23

ZÜRICH, SWITZERLAND

Sharing the Devoxx philoso-

phy that content comes irst,
Voxxed Days events see both

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://www.jfokus.se/jfokus/index.jsp
https://archconf.com/conference/clearwater/2016/12/home
https://devconf.cz
http://www.devnexus.com
https://voxxeddays.com/zurich/

08

//events /

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

spread of knowledge and innova-

tion in the developer commu-

nity. Scheduled tracks this year

include Performance Mythbusting
and Every Last Nanosecond: Low

Latency Java.

jDays
MARCH 7–8

GOTHENBURG, SWEDEN

jDays brings together software

engineers around the world to

share their experiences in difer-

ent areas such as Java, software

engineering, IoT, digital trends,

testing, agile methodologies,
and security.

ConFoo Montreal 2017
MARCH 8–10

MONTREAL, QUEBEC, CANADA

ConFoo Montreal is a multi-
technology conference for web

developers that promises 155
presentations by popular inter-

national speakers. Past ConFoo

topics have included how to write

better streams with Java 8 and an
introduction to Java 9.

Embedded World
MARCH 14–16

NUREMBERG, GERMANY

The theme for the 15th annual

gathering of embedded system
developers is Securely Connecting

the Embedded World. Topics
include IoT, connectivity, software

engineering, and security.

Devoxx US
MARCH 21–23

SAN JOSE, CALIFORNIA

Devoxx US focuses on Java, web,

mobile, and JVM languages. The
conference includes more than
100 sessions in total, with tracks
devoted to server-side Java, archi-

tecture and security, cloud and

containers, big data, IoT, and more.

JavaLand
MARCH 28–30

BRÜHL, GERMANY

This annual conference features

more than 100 lectures on sub-

jects such as core Java and JVM

languages, enterprise Java and

cloud technologies, IoT, front-end

and mobile computing, and much
more. Scheduled presentations
include Multiplexing and Server

Push: HTTP/2 in Java 9, The Dark
and Light Side of JavaFX, JDK 8
Lambdas: Cool Code that Doesn’t
Use Streams, Migrating to Java 9
Modules, and Java EE 8: Java EE
Security API.

PHOTOGRAPH BY CRALVAREZ/FLICKR

internationally renowned and

local speakers converge. Past pre-

sentations have included Bringing

the Performance of Structs to Java
(Sort Of) by Simon Ritter and Java
Security Architecture Demystiied
by Martin Toshev.

Topconf Linz 2017
FEBRUARY 28, WORKSHOPS

MARCH 1–2, CONFERENCE

LINZ, AUSTRIA

Topconf covers Java and JVM,

DevOps, reactive architecture,

innovative languages, UX/UI,

and agile development. Presen-
tations this year include Java

Libraries You Can’t Aford to
Miss, 8 Akka Antipatterns
You’d Better Be Aware Of, and

Spring Framework 5: Reactive
Microservices on JDK 9.

QCon London 2017
MARCH 6–8, CONFERENCE

MARCH 9–10, WORKSHOPS

LONDON, ENGLAND

For more than a decade, QCon
London has empowered software
development by facilitating the

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
http://www.jdays.se
https://confoo.ca/en/yul2017
http://www.embedded-world.eu/home.html
https://devoxx.us
http://www.javaland.eu/en/home/
http://topconf.com/linz-2017/
https://qconlondon.com

09

//events /

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

O’Reilly Software Architecture
Conference
APRIL 2–3, TRAINING

APRIL 3–5, TUTORIALS

AND CONFERENCE

NEW YORK, NEW YORK

This event promises four days of
in-depth professional training

that covers software architecture

fundamentals; real-world case
studies; and the latest trends in
technologies, frameworks, and
techniques. Past presentations

have included Introduction to

Reactive Applications, Reactive

Streams, and Options for the
JVM, as well as Microservice

Standardization.

Devoxx France
APRIL 5, WORKSHOPS

APRIL 6–7, CONFERENCE

PARIS, FRANCE

Devoxx France presents keynotes

from prestigious speakers, then
a cycle of eight mini conferences
every 50 minutes. You can build
your own calendar and follow the

sessions as you wish. Founded by

developers for developers, Devoxx

France covers topics ranging from
web security to cloud computing.
(No English page available.)

J On The Beach
MAY 17 AND 20, WORKSHOPS

MAY 18–19, TALKS

MALAGA, SPAIN

JOTB is an international rendez-

vous for developers interested in

big data technologies. JVM and

.NET technologies, embedded and
IoT development functional pro-

gramming, and data visualization
will all be discussed. Scheduled

speakers include longtime Java
Champion Martin Thompson and
Red Hat Director of Developer

Experience Edson Yanaga.

QCon New York
JUNE 26–28, CONFERENCE

JUNE 29–30, WORKSHOPS

NEW YORK, NEW YORK

QCon is a practitioner-driven
conference for technical team
leads, architects, engineering

directors, and project manag-

ers who inluence innovation
in their teams. Past speakers
include Chris Richardson, author

of POJOs in Action, and Frank

Greco, organizer of the largest
Java user group in North America
(NYJavaSIG).

JCrete
JULY 17–21

KOLYMBARI, GREECE

This loosely structured “uncon-

ference” involves morning ses-

sions discussing all things Java,

combined with afternoons spent
socializing, touring, and enjoy-

ing the local scene. There is also a

JCrete4Kids component for intro-

ducing youngsters to program-

ming and Java. Attendees often
bring their families.

̈berConf
JULY 18–21

DENVER, COLORADO

ÜberConf 2017 will be held at the
Westin Westminster in down-

town Denver. Topics include

Java 8, microservice architectures,
Docker, cloud, security, Scala,

Groovy, Spring, Android, iOS,

NoSQL, and much more.

NFJS Boston
SEPTEMBER 29–OCTOBER 1

BOSTON, MASSACHUSETTS

Since 2001, the No Fluf Just Stuf
(NFJS) Software Symposium Tour
has delivered more than 450
events with more than 70,000
attendees. This event in Boston

covers the latest trends within

the Java and JVM ecosystem,
DevOps, and agile development
environments.

JavaOne
OCTOBER 1–5

SAN FRANCISCO, CALIFORNIA

Whether you are a seasoned

coder or a new Java programmer,
JavaOne is the ultimate source of
technical information and learn-

ing about Java. For ive days, Java
developers gather from around
the world to talk about upcom-

ing releases of Java SE, Java EE,

and JavaFX; JVM languages; new
development tools; insights into
recent trends in programming;
and tutorials on numerous related
Java and JVM topics.

Have an upcoming conference
you’d like to add to our listing?

Send us a link and a description of

your event four months in advance
at javamag_us@oracle.com.

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
http://conferences.oreilly.com/software-architecture/sa-ny
http://conferences.oreilly.com/software-architecture/sa-ny
http://www.devoxx.fr/
http://jonthebeach.com
https://qconnewyork.com
http://www.jcrete.org
https://uberconf.com/conference/denver/2017/07/home
https://nofluffjuststuff.com/home/main
https://www.oracle.com/javaone/index.html
mailto:javamag_us%40oracle.com?subject=

http://www.DEVOXX.US/SPONSORS-2017

//javaone recap /

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

11

JavaOne, the annual meeting of Java developers, was

held this year as usual in San Francisco, California,

in mid-September. This conference has long been the

largest congregation of Java programmers in the world.

This year, more than 9,000 developers participated in

hundreds of sessions, many of which dealt with new

technologies such as the upcoming JDK 9.

There is news to report that came out of the con-

ference. Perhaps most important is Oracle’s announce-

ment of the forthcoming Java EE 8, which will be fol-

lowed by Java EE 9. Oracle Group Vice President Anil

Gaur gave some details on version 8, which is expected

to ship toward the end of 2017. It will include enhanced

security (management of secrets and support for OAuth

and OpenID), greater support for reactive program-

ming, a uniied event model, HTTP/2, JSON-B, as well
as a large set of other technologies. In addition, it will

be optimized for serverless contexts and for containers.

Java EE 9 is expected to ship a year later, in late 2018.

(A video of Gaur’s presentation on Java EE 8 is available

on YouTube.)

Another event of importance that happened during

JavaOne, but not strictly speaking at the conference,

was the changing fate of the NetBeans IDE. Oracle
announced that it would be the primary sponsor of

the IDE for the next two releases only—that is, the

imminent 8.x release and the later version 9, which

will support Java 9. In response, the NetBeans commu-

nity has applied to become a project under the aegis of

the Apache Software Foundation. The ramiications of
this are discussed in detail in the editorial in this issue

(page 3).

As usual, there were many brilliant presentations at

JavaOne. Some 85 of them were videotaped and are now

posted on YouTube.

An annual ixture of JavaOne is the Duke’s Choice

Awards, which recognize particularly meritorious Java

projects and Java tools. These awards are chosen by a

panel of community leaders and Oracle technical staf.
This year, the judges selected the following recipients

of interest to developers: PrimeFaces (there’s a pattern

here—last year the judges chose OmniFaces); HeapStats,

a lightweight monitoring tool for Java heap and GC

status with a GUI front end for analyzing the data it

generates; and Strata, an open source package used for

inancial analytics and market risk estimation.
The next annual JavaOne conference will be held

October 1–5, 2017, in San Francisco. For a listing of other

conferences and events, see the Events section (page 7)

in this issue.

JavaOne 2016:
The News and the Videos

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2ed9fLK
http://bit.ly/2epQceA
https://www.oracle.com/javaone/dukes-choice-award.html
https://www.oracle.com/javaone/dukes-choice-award.html
http://icedtea.classpath.org/wiki/HeapStats
http://strata.opengamma.io/

https://www.jetbrains.com/idea/specials/idea/idea.html?utm_source=javamag&utm_medium=banner&utm_content=capable-and-ergonomic&utm_campaign=idea

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

13
ART BY I-HUA CHEN

J
Unit is the most widely used testing tool in Java. Survey after

survey shows this. It’s so pervasive that other testing tools are

frequently built on top of JUnit (Spock, for example, as well as

most of the behavior-driven development frameworks), rather

than trying to duplicate its capabilities. JUnit’s speed, ease of

use, and universality make it the Java developer’s universal tool.

Version 5 is a fundamental rewrite and rearchitecture of JUnit. The

new features of this release are

summarized in our irst article
(page 14), which gives a concise

overview of the reinements. The
second article (page 20) shows how

to include JUnit 5 in your toolchain

and, especially, how to run tests

for versions 4 and 5 in the same

testing run.

Now that you see the beneits
of this release, we take you for a

deep dive into the architecture

(page 25). This article is ideal for

developers who want to extract

the most capability from the new

version, rather than just stay at a

basic assertion level. It’s also an

excellent introduction to JUnit’s

extension points, which imple-

ment the design that tools use to drive or interact with JUnit.

But this is a special issue, so there’s plenty more here. On page 36,

we interview Kent Beck, the original parent of JUnit as well as the father

of extreme programming—the core set of practices that form the basis of

most modern software development. As you’ll see, Beck’s view on test-

ing has evolved from being deeply rooted in test-irst development to one
that balances the beneits of tests with the costs they impose. He explains

this more nuanced view in detail,

which is sure to give pause to die-

hard TDD fans.

Finally, for developers who rely

on unit testing as a backstop for

mission-critical code, we explore

mutation testing (page 43), which

is heavy-duty, automated testing

that searches for gaps in unit tests.

It takes the unit tests and modi-

ies them slightly to see if tested-
for conditions when changed or

removed from the test cause the

test to fail or throw an exception.

This can identify duplicate tests,

incomplete tests, and those that

don’t actually test what you expect.

May the green bar be good

to you!

JUnit 5: The New Generation of Unit Testing
SPECIAL ISSUE

WHAT’S NEW IN JUNIT 5? 14 | RUNNING TESTS FROM JUNIT 4 AND 5 20 | JUNIT ARCHITECTURE 25 | KENT BECK ON TESTING 36

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

14

//junit 5 /

JUnit, the widely used Java unit testing framework, has

just seen the irst alpha release of version 5 after 10 years
on version 4. JUnit 5 consists of a revamped codebase with a
modular architecture, a new set of annotations, an extensible
model for third-party library integration, and the ability to
use lambda expressions in assertions.

The predecessor of JUnit 5 was the JUnit Lambda proj-
ect, which sowed the irst ideas for the next generation of
unit testing and was crowd-funded until October 2015 on
Indiegogo, where it received more than twice the target

amount in contributions.
Through the years, JUnit has captured the essence of

what a unit testing framework should be. However, its core
mostly stayed intact, which made it diicult for it to evolve.
This new version is a complete rewrite of the whole product
that aims to provide a suicient and stable API for running
and reporting tests. Implementing unit tests with JUnit 5
requires Java 8 at a minimum, but it can run tests on code
written for earlier versions of Java.

In Part 1 of this article, I describe the principal new fea-

tures of JUnit 5, illustrating them with detailed examples.
The JUnit team is planning to ship the inal version of the
framework by the end of 2016. Milestone 2 is one of the last
steps before JUnit 5 oicially ships. This will surely be one of
the most consequential releases ever in the Java ecosystem.

In Part 2 (page 20), I explain how to use and conigure JUnit 5
with your existing tools and how to run tests from JUnit 4 and

JUnit 5 together.

Anatomy of a JUnit 5 Test
Let’s look at some JUnit 5 tests, starting with the simple JUnit
test shown in Listing 1.

Listing 1.

import org.junit.jupiter.api.*;

class SimpleTest {

 @Test

 void simpleTestIsPassing() {

 org.junit.jupiter.api.Assertions

 .assertTrue(true);

 }

}

For a simple JUnit 5 test class, such as the one shown here,
there is almost no diference to be seen at irst glance when
compared with a JUnit 4 test class. The main diference is
that there is no need to have test classes and methods

deined with the public modiier. Also, the @Test annota-

tion—along with the rest of the annotations—has moved to

a new package named org.junit.jupiter.api, which needs

to be imported.

Capitalizing on the Power of Annotations
JUnit 5 ofers a revised set of annotations, which, in my view,
provide essential features for implementing tests. The anno-

Part 1: A First Look at JUnit 5
The long-awaited release of JUnit 5 is a complete redesign with many useful additions.

MERT ÇALIŞKAN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://junit.org/junit5/

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

15

//junit 5 /

tations can be declared individually, or they can be composed
to create custom annotations. In the following section, I

describe each annotation and give details with examples.
@DisplayName. It’s now possible to display a name for a test
class or its methods by using the @DisplayName annotation.

As shown in Listing 2, the description can contain spaces and
special characters. It can even contain emojis, such as J İ.

Listing 2.

@DisplayName("This is my awesome test class ‰")

class SimpleNamedTest {

 @DisplayName("This is my lonely test method")

 @Test

 void simpleTestIsPassing() {

 assertTrue(true);

 }

}

@Disabled. The @Disabled annotation is analogous to the

@Ignore annotation of JUnit 4, and it can be used to disable
the whole test class or one of its methods from execution. The

reason for disabling the test can be added as a description to
the annotation, as shown in Listing 3.

Listing 3.

class DisabledTest {

 @Test

 @Disabled("test is skipped")

 void skippedTest() {

 fail("feature not implemented yet");

 }

}

@Tags and @Tag. It’s possible to tag test classes, their meth-

ods, or both. Tagging provides a way of iltering tests for
execution. This approach is analogous to JUnit 4’s Categories.

Listing 4 shows a sample test class that uses tags.

Listing 4.

@Tag("marvelous-test")

@Tags({@Tag("fantastic-test"), @Tag("awesome-test")})

class TagTest {

 @Test

 void normalTest() {

 }

 @Test

 @Tag("fast-test")

 void fastTest() {

 }

}

You can ilter tests for execu-

tion or exclusion by providing tag
names to the test runners. The

way to run ConsoleLauncher is

described in detail in Part 2 of this
article. With ConsoleLauncher,

you can use the –t parameter for
providing required tag names or
the –T parameter for excluding
tag names.

@BeforeAll, @BeforeEach,

@AfterEach, and @AfterAll. The

behavior of these annotations is
exactly the same as the behavior
of JUnit 4’s @BeforeClass, @Before,

@After, and @AfterClass, respec-

tively. The method annotated with

If an assumption
fails, it does not
mean the code is
broken, but only that
the test provides no
useful information.
The default JUnit
runner ignores such
failing tests. This
approach enables
other tests in the
series to be executed.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

16

//junit 5 /

@BeforeEach will be executed before each @Test method, and

the method annotated with @AfterEach will be executed after
each @Test method. The methods annotated with @BeforeAll

and @AfterAll will be executed before and after the execution
of all @Test methods. These four annotations are applied to
the @Test methods of the class in which they reside, and they

will also be applied to the class hierarchy if any exists. (Test
hierarchies are discussed next.) The methods annotated with

@BeforeAll and @AfterAll need to be deined as static.
@Nested test hierarchies. JUnit 5 supports creating hierarchies
of test classes by nesting them inside each other. This option
enables you to group tests logically and have them under the
same parent, which facilitates applying the same initializa-

tion methods for each test. Listing 5 shows an example of
using test hierarchies.

Listing 5.

class NestedTest {

 private Queue<String> items;

 @BeforeEach

 void setup() {

 items = new LinkedList<>();

 }

 @Test

 void isEmpty() {

 assertTrue(items.isEmpty());

 }

 @Nested

 class WhenEmpty {

 @Test

 public void removeShouldThrowException() {

 expectThrows(

 NoSuchElementException.class,

 items::remove);

 }

 }

 @Nested

 class WhenWithOneElement {

 @Test

 void addingOneElementShouldIncreaseSize() {

 items.add("Item");

 assertEquals(items.size(), 1);

 }

 }

}

Assertions and Assumptions
The org.junit.jupiter.api.Assertions class of JUnit 5
contains static assertion methods—such as assertEquals,

assertTrue, assertNull, and assertSame—and their corre-

sponding negative versions for handling the conditions in
test methods. JUnit 5 leverages the use of lambda expressions
with these assertion methods by providing overloaded ver-

sions that take an instance of java.util.function.Supplier.

This enables the evaluation of the assertion message lazily,
meaning that potentially complex calculations are delayed
until a failed assertion. Listing 6 shows using a lambda
expression in an assertion.

Listing 6.

class AssertionsTest {

 @Test

 void assertionShouldBeTrue() {

 assertEquals(2 == 2, true);

 }

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

17

//junit 5 /

 @Test

 void assertionShouldBeTrueWithLambda() {

 assertEquals(3 == 2, true,

 () -> “3 not equal to 2!”);

 }

}

The org.junit.jupiter.api.Assumptions class provides
assumeTrue, assumeFalse, and assumingThat static methods.

As stated in the documentation, these methods are useful for
stating assumptions about the conditions in which a test is
meaningful. If an assumption fails, it does not mean the code
is broken, but only that the test provides no useful informa-

tion. The default JUnit runner ignores such failing tests. This

approach enables other tests in the series to be executed.

Grouping Assertions
It’s also possible to group a list of assertions together. Using
the assertAll static method, shown in Listing 7, causes all

assertions to be executed together and all failures to be
reported together.

Listing 7.

class GroupedAssertionsTest {

 @Test

 void groupedAssertionsAreValid() {

 assertAll(

 () -> assertTrue(true),

 () -> assertFalse(false)

);

 }

}

Expecting the Unexpected
JUnit 4 provides a way to handle exceptions by declar-

ing them as an attribute to the @Test annotation. This is an

enhancement compared with previous versions that required
the use of try-catch blocks for handling exceptions. JUnit 5
introduces the usage of lambda expressions for deining the
exception inside the assertion statement. Listing 8 shows the

placement of the exception directly into the assertion.

Listing 8.

class ExceptionsTest {

 @Test

 void expectingArithmeticException() {

 assertThrows(ArithmeticException.class,

 () -> divideByZero());

 }

 int divideByZero() {

 return 3/0;

 }

}

With JUnit 5, it’s also possible to assign the exception to a
variable in order to assert conditions on its values, as shown
in Listing 9.

Listing 9.

class Exceptions2Test {

 @Test

 void expectingArithmeticException() {

 StringIndexOutOfBoundsException exception =

 expectThrows(

 StringIndexOutOfBoundsException.class,

 () -> "JUnit5 Rocks!".substring(-1));

 assertEquals(exception.getMessage(),

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

18

//junit 5 /

 "String index out of range: -1");

 }

}

Dynamic Testing
With a new dynamic testing feature of JUnit 5, it’s now pos-

sible to create tests at runtime. This was not possible prior
to version 5 because all testing code needed to be deined at
compile time. An example of dynamic test creation is shown
in Listing 10.

Listing 10.

class DynamicTestingTest {

 @TestFactory

 List<DynamicTest>

 createDynamicTestsReturnAsCollection() {

 return Arrays.asList(

 dynamicTest("A dynamic test",

 () -> assertTrue(true)),

 dynamicTest("Another dynamic test",

 () -> assertEquals(6, 3 * 2))

);

 }

}

To create dynamic tests, irst
I created a method inside a

class and annotated it with

@TestFactory. JUnit handles

this @TestFactory method

while analyzing the class, and
it dynamically creates testing

units by using its return value.
The method annotated with

@TestFactory must return an

instance of Collection, Stream, Iterable, or an Iterator of

type DynamicTest. The DynamicTest class denotes a test case

that will be generated at runtime. Actually, it’s a wrapper
class that contains a name and an executable. That execut-
able refers to the test code execution block. The dynamicTest

static method deinition resides under the DynamicTest class,

and its objective is to create an instance of DynamicTest by
retrieving a name and an instance of Executable, which con-

sists of lambda expressions (as shown in Listing 10) that use

two assertions.

The lifecycle of a dynamic test is diferent from that of a
standard @Test annotated method. This means that lifecycle

callback methods, such as @BeforeEach and @AfterEach, are

not executed for dynamic tests.

Parameterized Test Methods
With the help of dynamic testing in JUnit 5, it’s possible to
execute the same test with diferent data sets. This was also
possible in JUnit 4 by employing the Parameterized runner

and by deining data with the @Parameterized.Parameters

annotation. But that approach has a limitation: it runs all test
methods annotated with @Test for every parameter again and
again, leading to needless executions. Creating dynamic tests

for each data item could lead to better encapsulation that is
local to the test method. I demonstrate this in Listing 11.

Listing 11.

@TestFactory

Stream<DynamicTest> dynamicSquareRootTest() {

 return Stream.of(

 new Object[][] {{2d, 4d}, {3d, 9d}, {4d, 16d}})

 .map(i -> dynamicTest("Square root test",

 () -> {

 assertEquals(i[0], Math.sqrt((double)i[1]));

 }));

}

The JUnit team has
succeeded in ofering a
new, redesigned version
of JUnit that addresses
nearly all the limitations
of previous versions.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

19

//junit 5 /

The dynamicSquareRootTest method annotated with

@TestFactory is not a test case, but it creates a Stream

instance of the DynamicTest class, which will contain the

various test implementations. For each tuple element of
the stream, I execute a lambda expression that maps to an
executable test case, and that test case does an assertion
that tests whether the irst element of the tuple equals
the square root of the second element of the tuple. Isn’t
that elegant?

Conclusion
The JUnit team has succeeded in ofering a new, redesigned
version of JUnit that addresses nearly all the limitations of

previous versions. Note that the JUnit 5 API is still subject
to change; the team is annotating the public types with the
@API annotation and assigning values such as Experimental,

Maintained, and Stable.

Give JUnit 5 a spin, and keep your green bar always on!

[This article is a considerably updated version of our initial
coverage of JUnit 5 in the May/June issue. —Ed.] </article>

Mert Çalişkan (@mertcal) is a Java Champion and coauthor

of PrimeFaces Cookbook (Packt Publishing, irst edition, 2013;

second edition, 2015) and Beginning Spring (Wiley Publications,

2015). He is the founder of Ankara JUG, the most active Java user

group in Turkey.

JUnit 5 oicial documentation

Another overview of this release of JUnit 5

learn more

Get Java
Certified
Oracle University

 Get noticed by hiring managers

 Learn from Java experts

 Join online or in the classroom

 Connect with our Java

certification community

Upgrade & Save 35%*

Save 35% when you upgrade or advance your existing Java certification. Offer expires December 31, 2016. Click for further details, terms, and conditions.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://junit.org/junit5/
https://www.sitepoint.com/junit-5-state-of-the-union/
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=930&sc=%20OUNV160624P00129

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

20

//junit 5 /

In Part 1 of this article (page 14), I wrote about the features

coming in JUnit 5. In this article, I provide more details on

the framework and its integration with build tools such as

Maven and Gradle.

All examples in this article are based on JUnit version

5.0.0-M2, which can be found on the project home page.

Architectural Overview
Let’s start with the packaging structure of JUnit 5, which was

revised after its alpha release. JUnit 5 now consists of three

main packages: Platform, Jupiter, and Vintage. The packaging

structure and modules are illustrated in Figure 1, which is cur-

rent as of the M2 release.

JUnit Platform is the package that provides the foun-

dation for the Vintage and Jupiter packages. It contains the

junit-platform-engine module, which ofers a public API for
integration of third-party testing frameworks such as Specsy,

which is a behavior-driven development (or BDD)-style unit-

level testing framework for JVM languages. The launching API

that is provided for build tools and IDEs now resides under

the junit-platform-launcher module. Prior to version 5,

both IDEs and test code used the same JUnit artifact. The

new, more-modular approach introduces a good separation of

concerns by having build tool artifacts and the API segregated

into diferent modules.
The junit-platform-runner module provides an API for

running JUnit 5 tests on JUnit 4. The junit-platform-console

module provides support for launching the JUnit platform

from a console that will enable running JUnit 4 and JUnit 5

tests from the command line and printing execution results

back to the console. The junit-platform-surefire-provider

module contains the JUnitPlatformProvider class, which

integrates with the Sureire plugin to run JUnit 5 tests via
Maven. (Sureire is the Maven plugin that runs JUnit tests
during the test cycle.) In addition, the junit-platform-

Part 2: Using JUnit 5
Integrating with build tools and IDEs and running v5 tests with earlier versions

Figure 1. The JUnit 5 architecture

junit-platform-engine

junit 4.12

junit-vintage-engine

junit-jupiter-api

junit-jupiter-engine

JUnit 4

based test

JUnit 5

based test

junit-platform-launcher

junit-platform-runner junit-platform-console

ID
Es / Build Tools

junit-platform-gradle-pluginjunit-platform-surefire-provider

PLATFORM

V
IN

T
A

G
E

J
U

P
IT

E
R

MERT ÇALIŞKAN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://junit.org/junit5
http://specsy.org/

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

21

//junit 5 /

gradle-plugin module ofers integration with Gradle builds. I
describe that later in this article.

The JUnit Vintage package provides an engine for run-

ning JUnit 3 and JUnit 4 tests on JUnit 5. The junit-vintage-

engine module is the engine that executes those tests. The

JUnit team provided the support for a former version of the

framework, and this support will encourage upgrading to

JUnit 5 regardless of the version in use. In a later section, I

describe the ways to run JUnit 4 tests.

JUnit Jupiter is a wrapper module of the new API and the

extension model, and it also provides an engine for running

JUnit 5 tests. junit-jupiter-api and junit-jupiter-engine

are submodules of the project. If you have only the junit-

jupiter-engine dependency deined, that suices for execut-
ing JUnit 5 tests because the junit-jupiter-api module is a

transitive dependency to the junit-jupiter-engine module.

Configuring Tools to Use JUnit 5
JUnit 5 dependency deinitions are available for the Maven
and Gradle frameworks. In addition, it’s also possible to

execute tests directly through the console. Some IDEs have

already started to provide support for running JUnit 5 tests,

so things look promising for the adoption of the framework.

Maven integration. The Maven dependency deinition for
JUnit 5 is shown in Listing 1. As I mentioned before, there is

no need to deine the junit-jupiter-api module, because

it will be fetched as a transitive dependency when I declare

junit-jupiter-engine.

Listing 1.

<dependency>

 <groupId>org.junit.jupiter</groupId>

 <artifactId>junit-jupiter-engine</artifactId>

 <version>5.0.0-M2</version>

 <scope>test</scope>

</dependency>

If you want to stick with JUnit 4.x, that is also possible within

JUnit 5 by deining its vintage-mode dependency, as shown in
Listing 2.

Listing 2.

<dependency>

 <groupId>org.junit.vintage</groupId>

 <artifactId>junit-vintage-engine</artifactId>

 <version>4.12.0-M2</version>

 <scope>test</scope>

</dependency>

The JUnit 4.12 and junit-platform-engine transitive depen-

dencies are retrieved automatically when vintage mode is

declared. For convenience, the JUnit team aligned the version

of the vintage modules with the latest available production-

ready JUnit release, which was 4.12 at the time of this writing.

After deining dependencies, it’s time to execute your
tests by using those dependencies. Inside the Maven build

cycle, maven-surefire-plugin should be deined with the
junit-platform-surefire-provider dependency, as shown in

Listing 3.

Listing 3.

<plugin>

 <artifactId>

 maven-surefire-plugin

 </artifactId>

 <version>2.19.1</version>

 <dependencies>

 <dependency>

 <groupId>

 org.junit.platform

 </groupId>

 <artifactId>

 junit-platform-surefire-provider

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

22

//junit 5 /

 </artifactId>

 <version>1.0.0-M2</version>

 </dependency>

 </dependencies>

</plugin>

The JUnit team developed the junit-platform-surefire-

provider dependency, and its aim is to enable running

both JUnit Vintage and JUnit Jupiter tests through Sure-

ire’s mechanism. The dependency doesn’t yet support
advanced parameters of Sureire, such as forkCount and

parallel, but I believe the next iterations of the Sureire
plugin will close that gap and will be 100 percent compatible

with JUnit 5.

Gradle integration. Deining dependencies in Gradle is similar
to deining them in Maven. Jupiter’s engine and API deini-
tions for Gradle are shown in Listing 4.

Listing 4.

dependencies {

 testCompile("org.junit.jupiter:+

 junit-jupiter-engine:5.0.0-M2")

}

And the Vintage engine deinition is given in Listing 5.

Listing 5.

dependencies {

 testCompile("org.junit.vintage:+

 junit-vintage-engine:4.12.0-M2")

}

To get the JUnit Gradle plugin hooked into the build, the

plugin should be declared and then applied in the conigura-

tion ile, as shown in Listing 6.

Listing 6.

buildscript {

 repositories {

 mavenCentral()

 }

 dependencies {

 classpath 'org.junit.platform:+

 junit-platform-gradle-plugin:1.0.0-M2'

 }

}

apply plugin: 'org.junit.platform.gradle.plugin'

As shown in Listing 7, it’s also possible to conigure the JUnit
Gradle plugin with the junitPlatform directive, with which I

can deine the engines for execution (all engines are enabled
by default, by the way) and test tags for inclusion or exclusion;

set a naming strategy for iltering test classes for execution;
specify a customized-reports directory deinition; and specify
a log manager coniguration.

Listing 7.

junitPlatform {

 engines {

 // include 'junit-jupiter', 'junit-vintage'

 // exclude 'custom-engine'

 }

 tags {

 // include 'fast'

 // exclude 'slow'

 }

 // includeClassNamePattern '.*Test'

 // enableStandardTestTask true

 // below is the default reports directory

 // "build/test-results/junit-platform"

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

23

//junit 5 /

 logManager 'org.apache.logging.log4j.jul.+

 LogManager'

}

Console integration. The ConsoleLauncher command-line

application enables you to run the JUnit Platform directly

from the console. The launcher can be executed with the Java

command shown in Listing 8. Building the classpath with the

needed JAR iles is a prerequisite, so ensure that you have the
correct version of the artifacts.

Listing 8.

java -cp

 /path/to/junit-platform-console-1.0.0-M2.jar:

 /path/to/jopt-simple-5.0.2.jar:

 /path/to/junit-platform-commons-1.0.0-M2.jar:

 /path/to/junit-platform-launcher-1.0.0-M2.jar:

 /path/to/junit-platform-engine-1.0.0-M2.jar:

 /path/to/junit-jupiter-engine-5.0.0-M2.jar:

 /path/to/junit-jupiter-api-5.0.0-M2.jar:

 /path/to/opentest4j-1.0.0-M1.jar:

 org.junit.platform.console.ConsoleLauncher -a

[The classpath should be entered as a single line. —Ed.]

The -a argument speciies that all tests should be run.
The -n argument can also be used to run only test classes

whose fully qualiied names match a regular expression.
Several other options are available, although according to the

documentation they are subject to change.

IDE integration. Java IDEs on the market are quickly evolving
to provide robust support for running JUnit 5 tests. At the

time of this writing, IntelliJ IDEA handles JUnit 5 tests with

its current release and creates a tree for tests by providing

support for both Jupiter and Vintage packages. Sample output

for testing a series of stack operations is shown in Figure 2.

The test class contains the new @Nested annotation on test

classes, which enables creating hierarchies of tests, which are

correctly represented in this igure.
Eclipse Neon and NetBeans 8.1 also support executing

JUnit 5 tests with the help of the JUnitPlatform runner,

which makes it possible to

run JUnit 5 tests on the JUnit 4

platform within the IDE.

Backward Compatibility
with Vintage Mode
With the help of the JUnit

Platform class, which is an

implementation of JUnit 4’s

Runner, it’s possible to execute

JUnit Jupiter-based test classes

on JUnit 4. The junit-

platform-runner module

contains the needed

JUnitPlatform class and it

should be deined with the Figure 2. Output from IntelliJ for nested tests

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

24

//junit 5 /

Jupiter engine dependency, as shown in Listing 9, in Maven.

Listing 9.

<dependency>

 <groupId>org.junit.jupiter</groupId>

 <artifactId>junit-jupiter-engine</artifactId>

 <version>5.0.0-M2</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.junit.platform</groupId>

 <artifactId>junit-platform-runner</artifactId>

 <version>1.0.0-M2</version>

 <scope>test</scope>

</dependency>

A sample test case implementation is given in Listing 10. As

seen in the import statements, the test case is solely imple-

mented with JUnit 5, and the deined runner makes it pos-

sible to execute the test on JUnit 4–based platforms such as

Eclipse Neon.

Listing 10.

import org.junit.jupiter.api.Test;

import org.junit.platform.runner.JUnitPlatform;

import org.junit.runner.RunWith;

import static

 org.junit.jupiter.api.Assertions.assertTrue;

@RunWith(JUnitPlatform.class)

class SampleTest {

 @Test

 void sampleTest() {

 assertTrue(true);

 }

}

Conclusion
The JUnit team did a very good job with the latest release of

version 5, and the new packaging structure shows that the

framework has been revamped to provide a foundation for

many future releases. JUnit 5 addresses nearly all the limi-

tations of the previous version and provides better support

via integration points for build tools, IDEs, and third-party

testing frameworks. By leveraging the use of lambdas and

with the help of new implementations such as the extension

model, I believe JUnit will continue to be the most popular

Java framework. </article>

Mert Çalişkan (@mertcal) is a Java Champion and coauthor

of PrimeFaces Cookbook (Packt Publishing, irst edition, 2013;

second edition, 2015) and Beginning Spring (Wiley Publications,

2015). He is the founder of Ankara JUG, the most active Java user

group in Turkey.

In-depth blog on the JUnit architecture

Using JUnit 5 in IntelliJ IDEA

JUnit team on Twitter

learn more

 “Part 1: A First Look at JUnit 5,” page 14

 “A Deep Dive into JUnit 5’s Extension Model,” page 25

 “Interview with Kent Beck,” page 36

 “ Mutation Testing: Automate the Search for Imperfect

Tests,” page 43

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blog.codefx.org/design/architecture/junit-5-architecture/
https://blog.jetbrains.com/idea/2016/08/using-junit-5-in-intellij-idea/
https://twitter.com/junitteam

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

25

//junit 5 /

The next release of JUnit is version 5, indicating a major

release of Java’s ubiquitous testing library. The primary

reasons for this major release are a new architecture that

separates JUnit the tool from JUnit the platform and a new

extension model that does away with key limitations of the

previous architecture.

In this article, I examine the extension model, which is

what third-party libraries and frameworks use to integrate

with or extend JUnit. This topic will be of primary interest to

writers of those tools and libraries, as well as to developers

who want intimate knowledge of how JUnit works. To follow

along, you will need to have a good working knowledge of

JUnit 4.

I should add that application developers who spend the

time to understand the extension model will be in a position

to reduce boilerplate and improve the readability and main-

tainability of their tests.

Test Lifecycle
Extensions hook into the test lifecycle, so let’s look at that

irst. Let’s take the following test as an example:

// @Disabled <1.>

class LifecycleTest {

 LifecycleTest() { /* <2.> */ }

 @BeforeAll

 static void setUpOnce() { /* <4.> */ }

 @BeforeEach

 static void setUp() { /* <5.> */ }

 @Test

 // @Disabled <3.>

 void testMethod(String parameter /* <6.> */)

 { /* <7. then 8.> */ }

 @AfterEach

 static void tearDown() { /* <9.> */ }

 @AfterAll

 static void tearDownOnce() { /* <10.> */ }

}

Here are the steps in the lifecycle (the numbers refer to the

comments above):
1. Check whether the tests in the test class (called the

container by JUnit) should be executed.

2. An instance of the container is created.

3. Check whether the particular test should be executed.

(From a lifecycle point of view, this step occurs here.

NICOLAI PARLOG

A Deep Dive into JUnit 5’s
Extension Model
The lowdown on how JUnit runs tests and how it interacts with libraries and frameworks

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

26

//junit 5 /

However, from a coding point of view, this is generally

speciied in the location marked in the preceding code.)
4. The @BeforeAll (formerly @BeforeClass) methods are

called if this is the irst test from the container.
5. The @BeforeEach (formerly @Before) methods are called.

6. Test method parameters are resolved. (Note that test

methods can now have parameters!)

7. The test is executed.

8. Possible exceptions are handled.

9. The @AfterEach (formerly @After) methods are called.

10. The @AfterAll (formerly @AfterClass) methods are

called if this is the last test from the container.

Now let’s see how to interact with that lifecycle.

Extension Points
When the JUnit 5 project came together in 2015, the main

designers decided on a couple of core principles, one of which

was this: prefer extension points over features.
And quite literally, JUnit 5 has extension points. So when

a test steps through the lifecycle described above, JUnit

pauses at deined points and checks which extensions want to
interact with the running test at that particular step. Here’s a

list of the extension points:
■■ ContainerExecutionCondition
■■ TestInstancePostProcessor
■■ TextExecutionCondition
■■ BeforeAllCallback
■■ BeforeEachCallback
■■ BeforeTestExecutionCallback
■■ ParameterResolver
■■ TestExecutionExceptionHandler
■■ AfterTestExecutionCallback
■■ AfterEachCallback
■■ AfterAllCallback

Note how they correspond closely to the testing life-

cycle. Of these, only BeforeTestExecutionCallback and

AfterTestExecutionCallback are new. They are more of a

technical requirement in case an extension needs to run as

closely to the test as possible, for example, to benchmark

a test.

What exactly is an extension, and how does it interact

with extension points? For each of the extension points, there

exists a Java interface that has the same name. The interfaces

are quite simple and usually have one, sometimes two, meth-

ods. At each point, JUnit gathers a lot of context information

(I’ll get to that shortly), accesses a list of registered exten-

sions that implement the corresponding interface, calls the

methods, and changes the test’s behavior according to what is

returned by the methods.

A Simple Benchmark
Before diving deeper, let’s look at a simple example. Let’s
say I want to benchmark my tests, which, for this example,

means I’ll print elapsed time to the console. As you’d expect,

before test execution, I store the test launch time, and after

execution, I print the elapsed time.

Looking over the list of extension points, two stand
out as being useful: BeforeTestExecutionCallback and

AfterTestExecutionCallback. Here are their deinitions:

public interface BeforeTestExecutionCallback

 extends Extension {

 void beforeTestExecution(

 TestExtensionContext context) throws Exception;

}

public interface AfterTestExecutionCallback

 extends Extension {

 void afterTestExecution(

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

27

//junit 5 /

 TestExtensionContext context) throws Exception;

}

This is what the extension looks like:

public class BenchmarkExtension implements

 BeforeTestExecutionCallback,

 AfterTestExecutionCallback {

 private long launchTime;

 @Override

 public void beforeTestExecution(

 TestExtensionContext context) {

 launchTime = System.currentTimeMillis();

 }

 @Override

 public void afterTestExecution(

 TestExtensionContext context) {

 long elapsedTime =

 System.currentTimeMillis() - launchTime;

 System.out.printf(

 "Test took %d ms.%n", elapsedTime);

 }

}

Registering Extensions
It is not suicient to implement an extension; JUnit also has
to know about it. An extension can be registered with the

@ExtendWith annotation, which can be used on types and

methods and takes the extension’s class as an argument.

During test execution, JUnit looks for these annotations on

test classes and methods and runs all extensions it can ind.

Registering an extension on a

single container or method is idem-

potent—meaning registering the

same extension multiple times on

the same element has no additional

efect. What about registering the
same one on diferent elements?

Extensions are “inherited” in

the sense that a method inherits all

extensions applied to the contain-

ing type, and a type inherits all the

extensions of its supertypes. They

are applied outside-in, so, for exam-

ple, a “before-each” extension that

was registered with a container is executed before extensions

to the same point on the executed method.

The outside-in approach, as opposed to a top-down

approach, implies that extensions adding “after” behavior

are executed in reverse order. That is, extensions registered

on methods are executed before those registered with the

corresponding container.

Registering diferent extensions for the same extension
point is, of course, possible as well. They are also applied

outside-in in the order in which they are declared.

Registering a benchmark extension. With that knowledge, let’s

apply a benchmark extension:

// this is the way all methods are benchmarked

@ExtendWith(BenchmarkExtension.class)

class BenchmarkedTest {

 @Test

 void benchmarked() throws InterruptedException {

 Thread.sleep(100);

 }

}

Stores are
hierarchical
because a store
is created for each
extension context,
which means there is
one store per node in
the test tree.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

28

//junit 5 /

After registering the extension on the container, JUnit applies

it to all contained tests, and running benchmarked will output

Test took 100 ms.

What would happen if you added another method and

registered the same extension again?

@Test

@ExtendWith(BenchmarkExtension.class)

void benchmarkedTwice() throws InterruptedException {

 Thread.sleep(100);

 assertTrue(true);

}

Given the explanation presented earlier, the extension would

be applied again and, indeed, you’d get the output twice.

Resolving extensions. Let’s get a feeling for how registration
is implemented. Whenever a test node (this could be a con-

tainer or a method) is prepared for execution, it takes the

AnnotatedElement that it wraps (either a class or a method)

and uses relection to access the @ExtendWith annotations

before extracting the actual extension classes.

Thanks to a handy utility method and streams, this

happens in a pretty inconspicuous piece of code in JUnit:

List<Class<? extends Extension>> extensionTypes =

 findRepeatableAnnotations(annotatedElement,

 ExtendWith.class)

 .stream()

 .map(ExtendWith::value)

 .flatMap(Arrays::stream)

 .collect(toList());

That List is used to create an ExtensionRegistry, which con-

verts the list into a set to implement idempotence. The regis-

try not only knows the extensions on the element it is created

for (let’s say a method), but it also holds a reference to the

registry that was created for the parent node (a container in

the example). Whenever a registry is queried for extensions,

it accesses its parent registry and includes the extensions

applied to it in its results. The call to the parent registry like-

wise accesses its parent and so on.

To implement the outside-in semantics I described ear-

lier, ExtensionRegistry ofers two methods: getExtensions

and getReversedExtensions. The former lists the parent’s

extensions before its own, thereby making it suitable for the

“before” order described earlier. The latter simply inverts the

result of the former, so it is called for “after” use cases.

Seamless Extensions
Applying extensions with @ExtendWith works but is pretty

technical and cumbersome. Luckily, the JUnit team thought
so as well, and they implemented a simple feature with pow-

erful consequences: The utility methods that look for anno-

tations know about meta-annotations, which is a term that

describes annotations that are applied to other annotations.

This means that it is not necessary to annotate a type

or method with @ExtendWith. It is suicient that it bears an
annotation that is either directly or, through the same pro-

cess, indirectly annotated with @ExtendWith. This has impor-

tant beneits for readability and enables you to write exten-

sions that seamlessly integrate with library features. Let’s
look at two use cases.

Seamless benchmarks. Creating a more beautiful variant of the

benchmark extension is straightforward:

@Target({ TYPE, METHOD, ANNOTATION_TYPE })

@Retention(RetentionPolicy.RUNTIME)

@ExtendWith(BenchmarkExtension.class)

public @interface Benchmark { }

Thanks to the Java ElementType speciied with @Target, I can

use @Benchmark on test containers and methods, as well as

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2dD66Vp
https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/ElementType.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

29

//junit 5 /

on other annotations, for further composition. This lets me

rewrite the earlier example to look much friendlier:

@Benchmark

class BenchmarkedTest {

 @Test

 void benchmarked() throws InterruptedException {

 Thread.sleep(100);

 }

}

Notice how much simpler that is.

Compositing features and extensions. Another useful pattern

enabled by JUnit meta-annotations is the composition of

existing features and extensions into new, intention-

revealing annotations. A simple example is IntegrationTest:

@Target(METHOD)

@Retention(RetentionPolicy.RUNTIME)

@Benchmark

@Tag("integration")

@Test

public @interface Benchmark { }

This is a custom annotation that a project might create

to fulill common requirements for integration tests. In
this case, all such tests are benchmarked and tagged as

integration, which allows them to be iltered and, most
importantly, annotated with @Test, which allows you to use

@IntegrationTest instead of @Test:

class ServerTest {

 @IntegrationTest

 void testLogin {

 // long running test

 Thread.sleep(10000);

 }

}

Extension Context
One of the cornerstones of the extension model is the

ExtensionContext, an interface with two specializations:
ContainerExtensionContext and TestExtensionContext. It

makes information regarding the current state of a container

or test available to extensions. It also ofers some APIs for
interacting with the JUnit machinery. A look at its methods

shows what it has to ofer:

Optional<ExtensionContext> getParent();

String getUniqueId();

String getDisplayName();

Set<String> getTags();

Optional<AnnotatedElement> getElement();

Optional<Class<?>> getTestClass();

Optional<Method> getTestMethod();

void publishReportEntry(Map<String, String> map);

Store getStore();

Store getStore(Namespace namespace);

JUnit creates a tree of test nodes, and each node produces

these contexts. Because the nodes have parents (for example,

the node corresponding to a test class is parent to the nodes

corresponding to the methods it declares), they let their

extension context reference their parent’s context.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

30

//junit 5 /

To enable you to identify and ilter containers and tests,
these items have IDs, more-human-readable display names,

and tags, which are accessed using the context methods. Very

importantly, the context gives access to the class or method

it was created for. This enables extensions to use relection,
which can, for example, access a test’s annotations or a

class’s ields. Let’s see this in action by slightly enriching the
benchmark extension to include the test’s display name in

the logged message:

@Override

public void afterTestExecution(

 TestExtensionContext context) {

 long elapsedTime =

 System.currentTimeMillis() - launchTime;

 System.out.printf("Test '%s' took %d ms.%n",

 context.getDisplayName(), elapsedTime);

}

And you can go even further. Instead of crudely printing to

the console, you can use JUnit’s report infrastructure by call-

ing publishReportEntry:

@Override

public void afterTestExecution(

 TestExtensionContext context) {

 long elapsedTime =

 System.currentTimeMillis() - launchTime;

 String message =

 String.format("Test '%s' took %d ms.",

 context.getDisplayName(), elapsedTime);

 context.publishReportEntry(

 createMapWithPair("Benchmark", message));

}

I won’t discuss JUnit’s reporting facility in depth, but suice

it to say that it is a way to log

messages to diferent output
sinks, such as the console

or XML reports. The method
publishReportEntry enables

an extension to interact with

the report. Finally, there is a

data store that must be used to

persist an extension’s state. I’ll

discuss this shortly.

As I’ve mentioned, JUnit

is in charge of identifying and applying extensions, which

implies that it is also managing instances of the extensions.

How does it do that? If you are going to assign information you

gathered during a run to ields, as I did in BenchmarkExtension,

you need to know the extension’s scope and lifetime.

As it turns out, that’s an intentionally unspeciied imple-

mentation detail. Deining a lifecycle for extension instances
and tracking them during a running test suite is at best both-

ersome and at worst a threat to maintainability. So all bets

are of! JUnit makes no guarantees whatsoever regarding the
lifecycle of extension instances. Hence, they need to be state-

less and should store any information on a data structure

provided by JUnit for that speciic purpose: the store.

The store. A store is a namespaced, hierarchical, key-value

data structure. Let’s look at each of these properties in turn.
To access the store via the extension context, a name-

space must be provided. The context returns a store that

manages entries exclusively for that namespace. This is done

to prevent collisions between diferent extensions operating
on the same node, which could lead to accidental sharing

and mutation of state. (Interestingly enough, the access via

namespaces can be used to intentionally access another

extension’s state, allowing communication and, hence, inter-

action between extensions, which could lead to interesting

cross-library features.)

It is straightforward to run
old JUnit 4 tests and new
JUnit 5 tests side by side.
This means it is not
necessary to migrate
individual tests.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2d3lBXI

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

31

//junit 5 /

Stores are hierarchical because a store is created for each

extension context, which means there is one store per node in

the test tree. Each test container or test method has its own

store. In much the same way as nodes “inherit” extensions,

stores inherit state. To be more precise, when a node creates

a store, the node hands the store a reference to its parent’s

store. Thus, for example, the store belonging to a test method

holds a reference to the store belonging to the test class that

contains the method. Upon queries (but not edits), a store

irst checks its own content before delegating to its parent
store. This makes a store’s state readable to all child stores.

Regarding having a key-value data structure, a store is a

simpliied map in which keys and values can be of any type.
Here are the most essential methods:

interface Store {

 void put(Object key, Object value);

 <V> V get(Object key, Class<V> requiredType);

 <V> V remove(Object key, Class<V> requiredType);

}

The methods get and remove take a type token to prevent

clients from littering their code with casts.

There is no magic there; the store simply does the casts
internally. Overloaded methods without type tokens exist

as well.

Stateless benchmarks. To make the benchmark extension

stateless, I need a couple of things:
■■ A namespace for the extension to access a store
■■ A key for the launch time
■■ The ability to write to and read from the store instead of

from a ield
For the irst two, I declare two constants:

private static final Namespace NAMESPACE =

 Namespace.create("org", "codefx", "Benchmark");

private static final String LAUNCH_TIME_KEY =

 "LaunchTime";

Reading and writing are two simple methods:

private static void storeNowAsLaunchTime(

 ExtensionContext context) {

 context.getStore(NAMESPACE)

 .put(LAUNCH_TIME_KEY, currentTimeMillis());

}

private static long loadLaunchTime(

 ExtensionContext context) {

 return context.getStore(NAMESPACE)

 .get(LAUNCH_TIME_KEY, long.class);

}

With these methods, I replace the access to the ield
launchTime, which can subsequently be removed.

The methods executed before and after each test now

look as follows:

@Override

public void beforeTestExecution(

 TestExtensionContext context) {

 storeNowAsLaunchTime(context);

}

@Override

public void afterTestExecution(

 TestExtensionContext context) {

 long launchTime = loadLaunchTime(context);

 long runtime = currentTimeMillis() - launchTime;

 print(context.getDisplayName(), runtime);

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

32

//junit 5 /

As you can see, the new meth-

ods use the store instead of the

ield to persist and access the
extension’s state.

Retrofitting @Test
Let’s look at a new example that
leverages much of the material I’ve

just covered.

Let’s say I want to move from
JUnit 4 to JUnit 5. First of all, thanks

to the design of the new architec-

ture, it is straightforward to run

old and new tests side by side. This

means it is not necessary to migrate

individual tests, which makes what

follows a little moot but no less fun.

I want to replace JUnit 4’s @Test

annotation with a new version that makes the annotated

method a JUnit 5 test. I could pick JUnit 5’s @Test, and this

works in most cases: a simple search-and-replace on the
import would do the trick. (Note: This is just a thought exper-

iment, not an actual recommendation.)

But JUnit 4’s optional arguments expected (to fail tests

when a particular exception is not thrown) and timeout (to

fail tests that run too long) are not supported in JUnit 5’s

annotation. JUnit 5 provides these features via assertThrows

and the upcoming assertTimeout. But I’m looking for a way

that requires no manual intervention, which precludes updat-

ing the tests to the new API.

So why not create my own @Test that JUnit 5 will recog-

nize and run and that implements the desired functionality?

First things irst. I’ll declare a new @Test annotation:

@Target(METHOD)

@Retention(RetentionPolicy.RUNTIME)

@org.junit.jupiter.api.Test

public @interface Test { }

This is pretty straightforward: I just declare the annotation
and meta-annotate it with JUnit 5’s @Test, so JUnit will iden-

tify annotated methods as test methods and run them.

Expecting exceptions. To manage expected exceptions, I irst
need a way for the user to declare them. For this, I extend

my annotation with code that is heavily inspired by JUnit 4’s

implementation of this feature:

public @interface Test {

 class None extends Throwable {

 private static final long

 serialVersionUID = 1L;

 private None() { }

 }

 Class<? extends Throwable>

 expected() default None.class;

}

Now, a user can use expected to specify which exception to

expect. It defaults to None.

The extension itself will be found in a class called

ExpectedExceptionExtension, which is shown below. To reg-

ister it with JUnit, I annotate @Test with @ExtendWith(Expected

ExceptionExtension.class).

Next, I need to actually implement the desired behavior.

Here is a short description of how I can do it:
1. If a test throws an exception, check whether it is the

expected exception. If it is, store the fact that the

expected exception was thrown. Otherwise, store that it

was the wrong one and rethrow the exception (because

During the test
lifecycle, JUnit
pauses at each
extension point,
searches for all
extensions that
apply to the current
test node, gathers
context information,
and calls extensions
in outside-in order.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2e1920n

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

33

//junit 5 /

the extension is not in charge of that exception).

2. After the test is executed, check whether the expected

exception was thrown. If so, do nothing because every-

thing went as planned; otherwise, fail the test.

For this logic, I need to interact with two extension

points, TestExecutionExceptionHandler and AfterTest

ExecutionCallback, so I implement the corresponding

interfaces:

public class ExpectedExceptionExtension

 implements TestExecutionExceptionHandler,

 AfterTestExecutionCallback {

 @Override

 public void handleTestExecutionException(

 TestExtensionContext context,

 Throwable throwable)

 throws Throwable { }

 @Override

 public void afterTestExecution(

 TestExtensionContext context) { }

}

Let’s start with step 1 and check whether the exception is
the one expected. For this, I use a small utility function,

expectedException, which accesses the @Test annotation,

extracts the expected exception class, and returns it in an

Optional (because maybe no exception was expected).

To capture the observed behavior, I create an enum, EXCEPTION,

and to persist the observation in the store, I write store

ExceptionStatus. With these helpers in place, I can imple-

ment the irst extension point:

@Override

public void handleTestExecutionException(

 TestExtensionContext context, Throwable throwable)

 throws Throwable {

 boolean throwableMatchesExpectedException =

 expectedException(context)

 .filter(expected ->

 expected.isInstance(throwable))

 .isPresent();

 if (throwableMatchesExpectedException) {

 storeExceptionStatus(context,

 EXCEPTION.WAS_THROWN_AS_EXPECTED);

 } else {

 storeExceptionStatus(context,

 EXCEPTION.WAS_THROWN_NOT_AS_EXPECTED);

 throw throwable;

 }

}

Note that by not rethrowing the exception, I inform JUnit that

I processed it and that all is in order. Accordingly, JUnit will

neither call additional exception handlers with it nor fail the

test. So far so good.

Now, after the test, I need to check what happened so I

can react accordingly. Another helper, loadExceptionStatus,

will retrieve the state and do me a further small favor: when
no exception was thrown, the extension point I implemented

above will not have been called, which means no EXCEPTION

instance was placed into the store. In this case, loadException

Status will return EXCEPTION.WAS_NOT_THROWN. Here is the

implementation:

@Override

public void afterTestExecution(

 TestExtensionContext context) {

 switch(loadExceptionStatus(context)) {

 case WAS_NOT_THROWN:

 expectedException(context)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

34

//junit 5 /

 .map(expected -> new IllegalStateException(

 "Expected exception " + expected +

 " was not thrown."))

 .ifPresent(ex -> { throw ex; });

 case WAS_THROWN_AS_EXPECTED:

 // the exception was thrown as expected,

 // so there is nothing to do

 case WAS_THROWN_NOT_AS_EXPECTED:

 // an exception was thrown but of the

 // wrong type; it was rethrown in

 // handleTestExecutionException,

 // so there is nothing to do here

 }

}

Two details of this approach are worthy of debate here.
■■ Is there a more appropriate exception than Illegal

StateException? For example, perhaps an Assertion

FailedError would be better.
■■ If the wrong exception was thrown, should I fail the

test here?

I rethrew the exception in handleTestExecutionException,

so presumably it either failed the test already or was caught

by some other extension that made the test pass. So failing,

it might break that other extension.

Both topics are worthwhile pursuing to inish this fea-

ture. But other than that, we’re done with the extension to

handle expected exceptions.

Timing out. The original timeout guaranteed that JUnit 4

would abandon a test once the speciied time ran out.
That requires pushing the test onto a separate thread.

Unfortunately, JUnit 5 has no extension points interacting

with threads, so this is not possible. One dire consequence

is that there can be no extensions that run tests on speciic
threads, such as the event dispatch thread for Swing tests

or the application thread for JavaFX tests. The JUnit team is

well aware of this limitation. Let’s hope they address it soon.
You could implement an alternative feature that mea-

sures how long a test ran, which implies that it must have

inished, and fail it if it was above the threshold. With all I
discussed so far, this should be fairly straightforward.

Conclusion
We’ve seen that JUnit 5 provides speciic extension points,
which are nothing more than small interfaces. Extension

developers can implement these interfaces and register their

implementations directly with @ExtendWith or, more seam-

lessly, with custom annotations.

During the test lifecycle, JUnit pauses at each extension

point, searches for all extensions that apply to the current

test node, gathers context information, and calls extensions

in outside-in order. Extensions operate on the context and

whatever state they persisted in the store. JUnit reacts to the

return values of the called methods and changes the test’s

behavior accordingly.

We’ve also seen how you can put this together for a

simple benchmark extension and for a more-involved clone

of JUnit 4’s @Test annotation. You can ind these and more
examples from me on GitHub.

If you have any questions or remarks to share, let me

know. </article>

Nicolai Parlog (@nipafx) has found his passion in software devel-

opment. He codes for a living as well as for fun. Parlog is the editor

of SitePoint’s Java channel and blogs about software development

on codefx.org. He also contributes to open source projects.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/junit-team/junit5/issues/20
https://github.com/CodeFX-org/demo-junit-5

http://www.OraclePressBooks.com

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

36

//junit 5 /

Binstock: I understand you work at Facebook these days. What

is it that you do there?

Beck: I am focused on engineer education. My oicial title is
technical coach, and that means what I do most days is pair
program and talk with engineers.
Binstock: Are these typically seasoned engineers or those just
recently entering the ield?
Beck: All sorts. What I ind if I coach a bunch of engineers
at a given level, I’ll start spotting patterns among whatever
bottleneck they’re hitting, and frankly,
I get bored telling the same stories and
addressing the same issues. So I’ll write
a course that addresses those issues.

We have an organization that’s very,
very good at cranking lots of engineers
through the course. So we have courses

for new college graduates; we have a
course for people making the transition
to technical leadership; we have a course
for technical leaders hired in from the
outside, because Facebook culture is very,
very diferent, and if you are used to lead-

ing by giving commands that other people
obey, that’s not going to work.
Binstock: When you’re working in a place
like Facebook, you’re probably seeing a
diferent kind of scaling dimension than
most developers encounter. So what

changes there? If I were to ask how your review of program-

ming was informed by the concerns of scaling, what would
you say is diferent?
Beck: It’s a great question because it’s really hard to boil it
down, so I can give you some speciics. Logging is far more
important. Performance, in some cases, is far more impor-

tant. A tiny little performance regression can bring the entire
site down. Because we’re trying to operate very eiciently
in terms of capital and also in terms of CPUs and bandwidth

and everything, there’s very little head-

room sometimes. So, for certain teams’
performance, there’s a lot to lose, as well
as a little bit to gain, and that’s, I think,
unusual. Logging is all about being able
to debug after something horrible goes
wrong. In classic extreme programming
style, you aren’t going to need it (YAGNI),
so you don’t write it. Well, here you are
going to need it, so you do write it. Even
if you don’t end up ever needing it, you
still need it.
Binstock: I see.

Beck: You need the option of being able to
post-mortem a service, and that option’s
worth a lot in a way that I just had never
seen before.

Binstock: How about when you commit

code to the main trunk? I would imagine

ANDREW BINSTOCK

Interview with Kent Beck
The parent of JUnit and creator of TDD discusses programming and testing—
and how his views on testing have evolved.

Kent Beck, inventor of extreme programming
and cocreator of JUnit. His work led to the
popularity of developer-based testing.

PHOTOGRAPH BY BOB ADLER/

GETTY IMAGES

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

37

//junit 5 /

that the amount of test-

ing that’s applied to that
code before that ever gets

checked into the main

build is probably signii-

cantly greater than at typi-
cal business sites. Is that
true, too?
Beck: That is not true as a

blanket statement. There’s
a principle I learned from
an economics professor
called reversibility. Say
you have a complicated system that reacts unpredictably to
stimuli. Henry Ford built these unprecedentedly large facto-

ries, complicated systems in which a tiny little change could
have huge efects. So his response to that was to reduce the
number of states the factory could be in by, for example,
making all cars black. All cars weren’t black because Henry
Ford was a controlling tightwad. It was simply so that the
paint shop either had paint or it didn’t.

That made the whole thing easier to manage. Well,
Facebook can’t reduce the number of states Facebook is in.
We want to keep adding more and more states. That’s how
we connect the world. So instead of reducing the number of
states, we make decisions reversible. In Henry Ford’s factory,
once you cut a piece of metal, you can’t uncut it. Well, we do
the equivalent of that all the time at Facebook. If you make
a decision reversible, then you don’t need to test it with the
kind of rigor that you’re talking about. You need to pay atten-

tion when it rolls out and turn it of if it causes problems.
Binstock: That’s an interesting alternative approach.
Beck: Well, there’s a bunch of counterexamples. For example,
code that handles money does go through extraordinary
rigor, or the Linux kernel goes through extraordinary rigor

because it’s going to be deployed on hundreds of thousands
of machines.

But changes to the website, you get feedback lots of dif-
ferent ways. You get feedback by testing it manually; you get
feedback by using it internally. You get feedback by rolling it to
a small percentage of the servers and then watching the met-
rics, and if something goes haywire, then you just turn it of.
Binstock: So nonreversible decisions get the heavy rigor and
perhaps extreme testing, and everything else rides much
more lightly in the saddle because of the reversibility.
Beck: Yes.

Development of JUnit
Binstock: Let’s discuss the origins of JUnit. This has been doc-

umented a lot in various videos that you’ve made. So rather
than go through it again, let me ask a few questions. How was
the work initially divided between you and Erich Gamma?

Beck: We pair-programmed everything.
Binstock: So you guys were both involved throughout the
entire project?
Beck: We literally did not touch the code unless we were both
sitting together—for several years.
Binstock: Were you using a form of TDD at the time?

Beck: Yes, strictly. We never added a feature without a broken
test case.

Binstock: OK. So how did you run the tests prior to JUnit being
able to run tests?
Beck: By bootstrapping. It looked ugly at irst. You might be
working from the command line, and then very quickly, you
get enough functionality that it becomes convenient to run
the tests. Then every once in a while, you break things in a
way that gives you a false positive result, and then you say,
“All the tests are passing, but we’re not running any tests
because of whatever change we just made.” Then you have
to go back to bootstrapping. People should try that exer-

Tests are just one form of
feedback, and there are some
really good things about them,
but depending on the
situation you’re in, there
can also be some very
substantial costs.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://en.wikipedia.org/wiki/Erich_Gamma

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

38

//junit 5 /

cise. That is an extremely informative exer-

cise, to bootstrap a testing framework test
using itself.
Binstock: The only thing you had before that
was SUnit [a JUnit precursor written by Beck
for Smalltalk]. That didn’t seem like it was
going to be very helpful in writing JUnit
except on a conceptual level.
Beck: No, no, we started over from scratch.
Binstock: What role you did you have in
JUnit 5? As I understand it, you were not sig-

niicantly involved in this release.
Beck: Yes, I think no involvement whatso-

ever is probably the closest. Actually, I think at one point,
they were talking about how to make two diferent kinds of
changes in one release, and I said, by making them two difer-

ent releases. So one piece of parental advice, and that was it.

Test First
Binstock: Do you still work on strictly a test-irst basis?
Beck: No. Sometimes, yes.
Binstock: OK. Tell me how your thoughts have evolved on
that. When I look at your book Extreme Programming Explained,
there seems to be very little wiggle room in terms of that.
Has your view changed?

Beck: Sure. So there’s a variable that I didn’t know existed at
that time, which is really important for the trade-of about
when automated testing is valuable. It is the half-life of the
line of code. If you’re in exploration mode and you’re just
trying to igure out what a program might do and most of
your experiments are going to be failures and be deleted in a
matter of hours or perhaps days, then most of the beneits of
TDD don’t kick in, and it slows down the experimentation—a
latency between “I wonder” and “I see.” You want that time
to be as short as possible. If tests help you make that time
shorter, ine, but often, they make the latency longer, and

if the latency matters and the half-life of
the line of code is short, then you shouldn’t
write tests.

Binstock: Indeed, when exploring, if I run into
errors, I may backtrack and write some tests
just to get the code going where I think it’s
supposed to go.
Beck: I learned there are lots of forms of feed-

back. Tests are just one form of feedback,
and there are some really good things about
them, but depending on the situation you’re
in, there can also be some very substantial
costs. Then you have to decide, is this one of

these cases where the trade-of tips one way or the other?
People want the rule, the one absolute rule, but that’s just
sloppy thinking as far as I’m concerned.
Binstock: Yes, I think perhaps one of the great beneits of
more than two decades of programming experience is the
great distrust in one overarching rule that’s unlinchingly
and unbendingly applied.
Beck: Yes. The only rule is think. IBM had that right.
Binstock: I recall you saying that certain things, like getters
and setters, really don’t have to be written test irst.
Beck: I think that’s more speciic than what I said. It’s always
been my policy that nothing has to be tested. Lots of people
write lots of code without any tests, and they make a bunch
of money, and they serve the world. So clearly, nothing has to
be tested.

There are lots of forms of feedback, and one of the fac-

tors that goes into the trade-of equation for tests is: what’s
the likelihood of a mistake? So if you have a getter, and it’s
just a getter, it never changes. If you can mess that up, we
have to have a diferent conversation. Tests are not going to
ix that problem.
Binstock: When you originally formulated the rules for TDD,
one of the cornerstones was that each iteration should have

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.amazon.com/Extreme-Programming-Explained-Embrace-Change/dp/0321278658/

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

39

//junit 5 /

the smallest possible incre-

ment of functionality. Where did
that view come from? What was

important about the smallest
possible increment?
Beck: If you have a big, beautiful
Italian salami, and you want to
know how long it’s going to take
to eat the whole thing, an efective
strategy is to cut of a slice and eat
it and then do the arithmetic. So,
1 millimeter takes me 10 seconds,
then 300 millimeters are going to
take me 3,000 seconds—now maybe more, maybe less. There
may be positive feedback loops, negative feedback loops,
other things to change that amount of time, but at least you
have some experience with it.

The diference between a journeyman programmer and a
master, from my perspective, is that the master never tries to
eat the whole salami at once. Number one, they always take
some big thing, and they put it into slices. That’s the irst
skill—iguring out where you can slice it.

The second skill is being creative about the order in
which you consume the slices, because you might think you
have to go left to right, but you don’t. Somebody says, “Well,
you have to write the input code before you can write the
output code.” I say, “I respectfully disagree. I can build a data
structure in memory and write the output code from that.” So
I can do input and then output, or output and then input.

If I have n slices, I have n-factorable permutations of
those slices, some of which don’t make any sense but many
of which do. So the two skills of the master programmer are
slicing thinner slices and considering more permutations of
the slices as the order of implementation. Neither of those
skills ever reaches any kind of asymptote. You can always

make thinner slices, and you can always think of more orders
in which to implement things to serve diferent purposes.

If you tell me I have a demo on Friday, I implement
things in a diferent order than if you tell me I have to run a
load test on Friday, same project. I’m going to slice it difer-

ently, and I’m going to implement the slices in a very difer-

ent order depending on what my next goal is.
Binstock: So the smallest possible increment is a general
rule to apply when there are other factors that don’t suggest
thicker slices?
Beck: I don’t believe in the smallest possible slice. I believe
in iguring out how to make the slices smaller. As small
as I think I’ve gotten the slices, I always ind some place,
some way to make them half that size, and then I kick
myself: “Why didn’t I think of this before? That’s not one
test case; that’s three test cases.” Then progress goes much
more smoothly.
Binstock: Well, if it hews very closely to the single respon-

sibility principle, it seems to me that you could have the
same dynamic there, where methods do just very, very small
operations, and then you have to string together thousands
of little tiny BB-sized methods, and igure out how to put
them together.

Beck: That would be bad because if you had to open 40 or 50
classes, I would argue that violated cohesion at some point,
and that’s not the right way to factor it out.
Binstock: I think we’re heading the same way—that there is a
limit at which cutting the slice even thinner doesn’t add value
and starts to erode other things.

Beck: Well, today, and then I sleep on it, and I wake up in
the morning and go, “Why didn’t I think of that? If I slice
it sideways instead of up and down, clearly it works bet-
ter.” Something about walking out the door on Friday
afternoon and getting in my car to go home—that was the

trigger for me.

Literate programs
just don’t maintain
very well because
there’s so much
coupling between the
prose and diagrams
and the code.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Single_responsibility_principle

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

40

//junit 5 /

The Coding Process
Binstock: Some years ago, I heard you recommend that when
developers are coding, they should keep a pad of paper and
a pen beside them and write down every decision that they
make about the code as they’re doing it.

You suggested that we would all be startled by the num-

ber of entries we would make, and that is exactly what hap-

pened with me. The more I looked at those lists that I put
together, the more I realized that when interruptions occur,
the ability to reconstruct the entire world view that I had
before the interruption occurred depends a lot on being able
to remember all of these microdecisions that have been
made. The longer the gap, the more diicult it is even to con-

sult the list to get those microdecisions back.
I’m wondering, have your thoughts on recording those

microdecisions evolved in any way in which you can make
that list useful rather than just having it be an exercise in
coding awareness?

Beck: No, no, it hasn’t. One of the things—and I’ve written
about this—is that I’m having memory problems. So I have
trouble holding big complicated, or even small, programs
in my head. I can be a pair-programming partner just ine
because I can rely on my partner’s memory, but me sitting
down and trying to write a big complicated program is just
not something I can do anymore.

I can still program, though, on the UNIX command line
because I can see the whole thing. So as long as it’s a one-
liner and I can build it, like, one command at a time, then I
can accomplish programming tasks, but it’s not maintainable
code. It’s all one-of codes. I do a lot of data mining. So if you
said, build a service to do X, that’s just not—diferent people
age in diferent ways at diferent rates, and so on—but that’s
just not something that I can independently take of and do
anymore, which is frustrating as hell.
Binstock: As I think about what you’re talking about and I
think about my own eforts to record those microdecisions,

there’s a certain part of me
that has a new appreciation
for things like Knuth’s Literate

Programming where you can

actually, in the comments, cap-

ture what it is you’re doing, what
you’re trying to do, and what
decisions you’ve made about it.
Actually, I worked that way for a
while after hearing your discus-

sion of this particular discipline. In some ways, it was help-
ful. In other ways, it created a lot of clutter that ultimately I
had to go back and pull out of the comments. So the only rea-

son I brought it up was just to see if you had gone any further
with that.

Beck: What I ind with literate programs is they just don’t
maintain very well because there’s so much coupling between
the prose and diagrams and the code. I’ve never put it in
those terms before, but that’s exactly right. If I make a
change to the code, not only do I have to change the code and
maybe the test, but I also have to change these four para-

graphs and those two diagrams, and I have to regather this
data and render it into a graph again. So it’s not eiciently
maintainable. If you had code that was very stable and you
wanted to explain it, then that wouldn’t come into play, and it
would make sense again.
Binstock: I had a conversation with Ward Cunningham in

which he talked about pair programming with you many
years ago and how surprised he was by how frequently you
guys would come to a decision point and the tool by which you
moved forward was by asking, “What is the simplest possible
thing we can do that will get us past this particular point?” If
you always work from the simplest possible thing, do you not,
at some point, have to go back and refactor things so that you
have code that you can be proud of rather than code that short-
circuits the problem? How do you balance those two things?

I’m a big believer in
getting rid of textual
source code and
operating directly on the
abstract syntax trees.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Literate_programming
http://www.drdobbs.com/240000393

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

41

//junit 5 /

Beck: Sure. So I don’t get paid to be proud. Like in JUnit, we
wrote code that we’d be proud of or we didn’t write the code.
We could make that trade-of because we had no deadlines
and no paying customers.

But on a regular basis, if I’m not proud of the code but my
employer is happy with the results, yes. They call it work, and
I get paid to do it. So there are other reasons to clean up.

The answer is sure, you’re going to make locally opti-
mized decisions because you just don’t know stuf, and then
you do know stuf and once you learn, then you’re going to
realize the design should’ve been like this and this and this
instead. Then you have to decide when, how, and whether to
retroit that insight into your current code. Sometimes you do
and sometimes you don’t.

But I don’t know what the alternative is. People say,
“Well, aren’t you going to have to go refactor?” Well, sure. So
what’s the alternative?

I remember I gave a workshop in Denmark, and I gave
a day-long impassioned speech about the beauties of itera-

tion. At the end of the day, this guy had been sitting in the
front row the entire day looking at me with an increasingly
troubled expression—worse, and worse, and worse. He inally
raised his hand just before the time was up, and he said,
“Wouldn’t it be easier to do it right the irst time?” I wanted
to hug him. I said, “With all the compassion I have in me, yes,
it would. I don’t have any response other than that.”
Binstock: Lovely question!
Beck: I sat next to Niklaus Wirth on an airplane once. I talked
to the agent. I told him we were colleagues and would he please
move me, and so I’m like a stalker—I fanboy’ed him. I don’t
mind. If you get a chance to sit next to Niklaus Wirth, you’re
going to do it. So we got to talking, and I told him about TDD
and incremental design, and his response was, “I suppose
that’s all very well if you don’t know how to design software.”
Binstock: That sounds like the type of thing Wirth was known
to say.

Beck: You have to say, “Well, yes, I don’t know how to—con-

gratulations! You do know. I don’t. So what am I supposed to
do? I can’t pretend I’m you.”

Testing Today
Binstock: Let’s discuss microservices. It seems to me that
test-irst on microservices would become complicated in the
sense that some services, in order to function, will need the
presence of a whole bunch of other services. Do you agree?
Beck: It seems like the same set of trade-ofs about having
one big class or lots of little classes.
Binstock: Right, except I guess, here you have to use an awful
lot of mocks in order to be able to set up a system by which
you can test a given service.

Beck: I disagree. If it is in an imperative style, you do have
to use a lot of mocks. In a functional style where external
dependencies are collected together high up in the call chain,
then I don’t think that’s necessary. I think you can get a lot of
coverage out of unit tests.

Binstock: Today, the UI is so much more important than at
any previous time. How did you unit-test UIs in the past and
today? Were you using things like FitNesse and other frame-

works, or were you just eyeballing the results of the tests?
Beck: I never had a satisfactory answer. Let me put it that
way. I tried a bunch of stuf. I built integration testing frame-

works, I used other people’s tools, I tried diferent ways of
summarizing what a UI looked like in some test-stable way,
and nothing worked.

Binstock: Today, you’re pretty much in the same position,
aren’t you?
Beck: Yes, I haven’t seen anything that fundamentally
changes. It’s all about false positives and false negatives.
What’s the rate at which your tests say everything’s OK, and
everything’s broken. That damages your trust in your tests.
How often does the testing framework say something’s
wrong, and everything’s ine? Very often, one pixel changes

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://en.wikipedia.org/wiki/Niklaus_Wirth

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

42

//junit 5 /

color very slightly, and
then the tests all break,
and you have to go through

one at a time and go, “Oh,
yeah, no, this is ine.” And
you’re not going to do that
very many times before

you just blow of the tests.
Binstock: The cost is the

lost time and the lost trust.
Beck: Yes.

Coding Environment
Binstock: What does your preferred programming environ-

ment look like today, whether that’s home or work?
Beck: The things I do that look like programming, I do
entirely on either UNIX command line or in Excel.
Binstock: In Excel?
Beck: Yes, because I can see everything.
Binstock: How do you mean?

Beck: So, like the transformations, I do the data transforma-

tions, like numbers to numbers on the UNIX command line,
and then I render them into pictures using Excel.
Binstock: When you’re programming things that are not
related to data mining, you mentioned earlier that you still
use Smalltalk for exploratory things.
Beck: Yes, the advantage of Smalltalk for me is I memo-

rized the API long enough ago that I still have access to all
those details.
Binstock: Do you typically work with multiple screens?
Beck: Yes, the more pixels, the better. It was a great Terry

Pratchett quote, he says, “People ask me why I have six
screens attached to my Mac, and I tell them it’s because I
can’t attach eight screens.” Oculus or some kind of virtual
reality is just going to blow that out of the water, but nobody
knows how.

Binstock: We’ll have to go through a number of iterations of
things like that before virtual reality actually inds a role
that’ll help with the coding.
Beck: Yes, I’m a big believer in getting rid of textual source
code and operating directly on the abstract syntax trees. I
did an experimental code editor called Prune with my friend
Thiago Hirai. It looked like a text editor and it rendered as
a text editor would render, but you could only do operations
on the abstract syntax trees, and it was much more eicient,
much less error-prone. It required far less cognitive efort.
That convinced me that’s the wave of the future, and I don’t
know if it’s going to be in 5 years or 25 years, but we’re all
going to be operating on syntax trees sometime soon.
Binstock: Yes, of all the things that have changed and moved
forward, the requirement that we still code at an ink-and-
paper level hasn’t really moved forward very much.
Beck: No, we’re coding on punch cards. It’s rendered one on
top of the other, but it’s the same darn stuf.
Binstock: The initial place of programmer activity hasn’t
evolved very much at all. Despite having wonderful IDEs and
things of that sort, the physical act is still very much the
same. One last thing, I know you’re a musician. Do you listen
to music when you code?

Beck: Yes.
Binstock: What kind of music do you ind that you enjoy most
coding to?

Beck: I use it to kind of regulate my energy level, so if I’m
a little activated, then I’ll listen to something soothing.
And my go-to for that is Thomas Tallis’ The Lamentations of

Jeremiah, which is a very lowing vocal quartet kind of medi-
eval music. If I’m a little low and I need picking up, then I
listen to go-go music, which is an ofshoot of funk native to
Washington DC.
Binstock: OK. I’ve never heard of that.
Beck: That’s my upping music.
Binstock: Wonderful! Thank you! </article>

If I’m a little activated [when
coding], then I’ll listen to
something soothing. And my
go-to for that is Thomas
Tallis’ The Lamentations

of Jeremiah.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.pattayadays.com/2009/11/why-do-you-have-six-monitors/
http://www.pattayadays.com/2009/11/why-do-you-have-six-monitors/

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

43

//junit 5 /

If you’ve written any code in the last week, you’ve most likely

also written a unit test to go with it. You’re not alone. These

days, it’s rare to ind a codebase without unit tests. Many
developers invest a lot of time in their tests, but are they
doing a good job?

This question began to trouble me seven years ago while
I was working on a large legacy codebase for a inancial ser-

vices company. The code was very diicult to work with, but
was a core part of the business and needed to be constantly
updated to meet new requirements.

A lot of my team’s time was spent trying to wrestle the

code into maintainable shape. This made the business owners
nervous. They understood that the team had a problem and
needed to make changes, but if the team introduced a bug it
could be very costly. The business owners wanted reassurance
that everything was going to be all right.

The codebase had a lot of tests. Unfortunately, the team
didn’t need to examine them very closely to see that the tests

were of no better quality than the code they tested. So, before
the team members changed any code, they irst invested a lot
of efort in improving the existing tests and creating new ones.

Because my team members always had good tests before
they made a change, I told the business owners not to worry:
if a bug were introduced while refactoring, the tests would
catch it. The owners’ money was safe.

But what if I were wrong? What if the team couldn’t trust

the test suite? What if the safety net was full of holes? There
was also another related problem.

As the team members changed the code, they also
needed to change the tests. Sometimes the team refactored
tests to make them cleaner. Sometimes tests had to be up-
dated in other ways as functionality was moved around the

codebase. So even if the tests were good at the point at which
they were written, how could the team be sure no defects
were introduced into tests that were changed?

For the production code, the team had tests to catch mis-

takes, but how were mistakes in the test code caught? Should
the team write tests for the tests? If that were done, wouldn’t
the team eventually need to write tests for the tests for the

tests—and then tests that tested the tests that tested the

tests that tested the tests? It didn’t sound like that would end
well, if it ever ended at all.

Fortunately, there is an answer to these questions. Like

many other teams, my team was using a code coverage tool to

measure the branch coverage of the tests.
The code coverage tool would tell which bits of the code-

base were well tested. If tests were changed, the team just
had to make sure there was still as much code coverage as

before. Problem solved. Or was it?
There was one small problem with relying on code cover-

age in this way. It didn’t actually tell the team anything about
whether the code was tested, as I explain next.

HENRY COLES

Mutation Testing: Automate
the Search for Imperfect Tests
Locate incorrect and incomplete unit tests with pitest.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

44

//junit 5 /

What’s Wrong with Code Coverage?
The problem is illustrated by some of the legacy tests I found
within the code. Take a contrived class such as this:

class AClass {

 private int count;

 public void count(int i) {

 if (i >= 10) {

 count++;

 }

 }

 public void reset() {

 count = 0;

 }

 public int currentCount() {

 return count;

 }

}

I might ind a test that looked like this:

@Test

public void testStuff() {

 AClass c = new AClass();

 c.count(11);

 c.count(9);

}

This test gives 100 percent line and branch coverage, but tests
nothing, because it contains no assertions. The test executes
the code, but doesn’t meaningfully test it. The programmer
who wrote this test either forgot to add assertions or wrote

the test for the sole purpose of making a code coverage sta-

tistic go up. Fortunately, tests such

as this are easy to ind using static
analysis tools.

I also found tests like this:

@Test

public void testStuff() {

 AClass c = new AClass();

 c.count(11);

 assert(c.currentCount() == 1);

}

The programmer has used the assert keyword instead of a

JUnit assertion. Unless the test is run with the -ea lag set on
the command line, the test can never fail. Again, bad tests
such as this can be found with simple static analysis rules.

Unfortunately, these weren’t the tests that caused my
team problems. The more troubling cases looked like this:

@Test

public void shouldStartWithEmptyCount() {

 assertEquals(0,testee.currentCount());

}

@Test

public void shouldCountIntegersAboveTen() {

 testee.count(11);

 assertEquals(1,testee.currentCount());

}

@Test

public void shouldNotCountIntegersBelowTen() {

 testee.count(9);

 assertEquals(0,testee.currentCount());

}

You can’t rely on
code coverage tools
to tell you that code
has been tested.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

45

//junit 5 /

These tests exercise both branches of the code in the count

method and assert the values returned. At irst glance,
it looks like these are fairly solid tests. But the problem
wasn’t the tests the team had. It was the tests that the team

didn’t have.

There should be a test that checks what happens when
exactly 10 is passed in:

@Test

public void shouldNotCountIntegersOfExcelty10() {

 testee.count(10);

 assertEquals(0,testee.currentCount());

}

If this test doesn’t exist, a bug could accidentally be intro-

duced, such as the one below:

public void count(int i) {

 if (i > 10) { // oops, missing the =

 count++;

 }

}

A small bug like this could have cost the business tens of
thousands of dollars every day it was in production until the

moment that it was noticed and ixed.
This kind of problem can’t be found by static analysis. It

might be found by peer review, but then again it might not. In
theory, the code would never be written without a test if test-
driven development (TDD) were used, but TDD doesn’t magi-
cally stop people from making mistakes.

So you can’t rely on code coverage tools to tell you that
code has been tested. They’re still useful, but for a slightly
diferent purpose. They tell you which bits of code are dei-

nitely not tested. You can use them to quickly see which code

deinitely has no safety net, in case you wish to change it.

Better Coverage with Mutation Testing
One of the things I used to do after writing a test was double-
check my work by commenting out some of the code I’d just
implemented, or else I’d introduce a small change such as

changing <= to <, as in the earlier example. If I ran my test

and it didn’t fail, that meant I’d made a mistake.

This gave me an idea. What if I had a tool that made
these changes automatically? That is, what if there were a tool
that added bugs to my code and then ran the tests? I would
know that any line of code for which the tool created a bug
but the test didn’t fail was not properly tested. I’d know for
certain whether my test suite was doing a good job.

Like most good ideas, it turned out that I wasn’t the

irst to have it. The idea had a name—mutation testing—and

it was irst invented back in the 1970s. The topic had been
researched extensively for 40 years, and the research com-

munity had developed a terminology around it.

The diferent types of changes I made by hand are called
mutation operators. Each operator is a small, speciic type of
change, such as changing >= to >, changing a 1 to a 0, or com-

menting out a method call.

When a mutation operator is applied to some code, a
mutant is created. When tests are run against a mutant ver-

sion of the code, if one of the tests fails, the mutant was

“killed.” If no tests fail, the mutant survived.

The academics examined the various types of muta-

tion operators that were possible, looked at which were more
efective, and explored how well test suites that detected
these artiicial bugs could detect real bugs. They also pro-

duced several automated mutation testing tools, including

some for Java.

So why haven’t you heard about mutation testing before?
Why aren’t all developers using mutation testing tools? I’ll
talk about one problem now and the other a little later on.

The irst problem is straightforward: mutation testing is
computationally very expensive. In fact, it’s so expensive that

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

46

//junit 5 /

until 2009, most academic research
looked only at toy projects with less

than a hundred lines of code. To

understand why it’s so expensive, let’s

look at what a mutation testing tool

needs to do.

Imagine you are performing

mutation tests on the Joda-Time

library, which is a small library for
handling dates and times. This library
has about 68,000 lines of code and
about 70,000 lines of test code. It
takes about 10 seconds to compile the
code and about 16 seconds to run the
unit tests.

Now, imagine that your mutation

test tool introduces a bug on every
seventh line of code. So you’d have about 10,000 bugs. Each
time you change a class to introduce a bug, you need to com-

pile the code. Perhaps that would take one second. So that
would be 10,000 seconds of compilation time to produce the
mutations (this is called the generation cost), which is more

than two and a half hours. You also need to run the test suite

for each mutant. That’s 160,000 seconds, which is more than
44 hours. So performing mutation testing on the Joda-Time
library would take almost two days.

Many of the early mutation testing tools worked exactly
like this hypothetical tool. You still occasionally ind people
trying to sell tools that work like this, but using such a tool is
clearly not practical.

When I became interested in mutation testing, I looked at
the available open source tools. The best one I could ind was
Jumble. It’s faster than the simplistic tool I described above,
but it was still quite slow. And it had other problems that
made it diicult to use.

I wondered if I could do better. I already had some code
that seemed like it might help—it was code for running

tests in parallel. It ran tests in diferent class loaders so that
when state that was stored in static variables in legacy code
was changed, the running tests wouldn’t interfere with each

other. I called it Parallel Isolated Test (or PIT).
After many evenings of experimentation, I managed to

do better. My PIT mutation testing tool could analyze 10,000
mutations in the Joda-Time library in about three minutes.

Introducing Pitest
My tool has kept the initials of the codebase from which it
grew, but it’s now also known as “pitest,” and it is used all
over the world.

It’s used for academic research and for some exciting

safety-critical projects, such as for testing the control sys-

tems of the Large Hadron Collider at CERN. But mainly it is

used to help test the kind of nonsafety-critical code that most

developers produce every day. So how does it manage to be so
much faster than the earlier system?

First, it copied a trick from Jumble. Instead of spending
two and a half hours compiling source code, pitest modiies
bytecode directly. This allows it to generate hundreds of
thousands of mutants in subsecond time.

But, more importantly, it doesn’t run all the tests against

each mutant. Instead, it runs only the tests that might kill a

mutant. To know which tests those might be, it uses cover-

age data.

The irst thing pitest does is collect line-coverage data
for each test so that it knows which tests execute which lines

of code. The only tests that could possibly kill a mutant are
the ones that exercise the line of code the mutation is on.

Running any other tests is a waste of time.

Pitest then uses heuristics to select which of the cover-

ing tests to run irst. If a mutant can be killed by a test,

It’s not possible
to perform
a mutation
test when you
have a failing
test, because
doing that would
mistakenly appear
to kill any mutants
that it covered.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

47

//junit 5 /

pitest usually inds the killing test
in one or two attempts.

The biggest speedup is
achieved when you have a mutant

that is not exercised by any test.
With the traditional approach,
you’d have to run the entire test

suite to determine that the mutant

could not be killed. With the
coverage-based approach, you can
determine this instantly with almost no computational cost.

Line coverage identiies code that is deinitely not tested.
If there is no test coverage for the line of code where a mutant

is created, then none of the tests in the suite can possibly kill
it. Pitest can mark the mutant as surviving without doing any
further work.

Using Pitest
Setting up pitest for your project is straightforward. IDE plug-
ins have been built for Eclipse and IntelliJ IDEA, but person-

ally I prefer to add mutations from the command line using

the build script. Some very useful features of pitest are acces-

sible only in this way, as you’ll see in a moment.
I normally use Maven as my build tool, but pitest plugins

also exist for Gradle and Ant.

Setting up pitest for Maven is straightforward. I usually
bind pitest to the test phase using a proile named pitest.

Then pitest can be run by activating the proile with –P, as

shown here:

mvn -Ppitest test

As an example, I’ve created a fork of the Google assertion

library Truth on GitHub, and I added pitest to the build. You
can see the relevant section of the project object model (POM)
ile here.

Let’s go through it step by step.
<threads>2</threads> tells pitest to use two threads

when performing mutation testing. Mutation testing usually
scales well, so if you have more than two cores, it is worth

increasing the number of threads.
<timestampedReports>false</timestampedReports> tells

pitest to generate its reports in a ixed location.
<mutators><value>STRONGER</value></mutators> tells

pitest to use a larger set of mutation operators than the

default. This section is commented out in the POM ile at the
moment. I’ll enable it a little later on. If you’re just starting
out with mutation testing on your own project, I suggest you

also stick with the defaults at irst.
The pitest Maven plugin assumes that your project follows

the common convention of having a group ID that matches

your package structure; that is, if your code lives in packages

named com.mycompany.myproject, it expects the group ID to

be com.mycompany.myproject. If this is not the case, you might

get an error message such as the following when you run pitest:

No mutations found. This probably means there is an issue

with either the supplied classpath or filters.

Google Truth’s group name doesn’t match the package struc-

ture, so I added this section:

<targetClasses>

 <param>com.google.common.truth*</param>

</targetClasses>

Note the * at the end of the package name.

Pitest works at the bytecode level and is conigured by
supplying globs that are matched against the names of the
loaded classes, not by specifying the paths to source iles.
This is a common point of confusion for people using it for

the irst time.

The most efective
time to perform
mutation tests on
your code is when you
write the code.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2e0Cly2

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

48

//junit 5 /

Another common problem when setting up pitest for the
irst time is this message: All tests did not pass without
mutation when calculating line coverage. Mutation test-

ing requires a green suite.

This message can occur if you have a failing test. It’s not

possible to perform a mutation test when you have a failing
test, because doing that would mistakenly appear to kill
any mutants that it covered. Sometimes you’ll also get the
message when all the tests pass when run normally with

mvn test. If this happens, there are a few possible causes.
Pitest tries to parse the coniguration of the Sureire test

runner plugin and convert the coniguration to options that
pitest understands. (Sureire is the plugin that Maven uses by
default to run unit tests. Often no coniguration is required,
but sometimes tests need some special coniguration in order
to work, which must be supplied in the pom.xml ile.)

Unfortunately, pitest can’t yet convert all the possible
types of Sureire coniguration. If your tests rely on system
properties or command-line arguments being set, you need
to specify them again in the pitest coniguration.

Another problem that’s more diicult to spot is order
dependencies in the tests. Pitest runs your tests many times
in many diferent sequences, but you might have a test that
fails if certain other tests run before it.

For example, if you have a test called FooTest that sets

a static variable in a class to false, and you have another test
called BarTest that assumes that the variable is set to true,
BarTest will pass if it is run before FooTest but fail if it is run
afterward. By default, Sureire runs tests in a random but
ixed order. The order changes when a new test is added, but
you might never have run the tests in an order that reveals

the dependency. When pitest runs the tests, the order it uses
might reveal the order dependency for the irst time.

Test-order dependencies are very hard to spot. To avoid

them, you can make tests defensively set shared state on

which they depend to the right value when they start, and

make them clean up after themselves when they inish. But
by far the best approach is to avoid having shared mutable
state in your program in the irst place.

Finally, the setup for using the Google Truth library
includes this section:

<excludedClasses>

 <param>

 *AutoValue_Expect_ExpectationFailure

 </param>

</excludedClasses>

This coniguration prevents all classes whose name ends in
AutoValue_Expect_ExpectationFailure from having muta-

tions seeded into them. These classes are autogenerated by
the Google Truth build script. There is no value in performing
mutation testing on them, and any mutations that are created

would be diicult to understand because you do not have the
source code.

Pitest also provides other ways to exclude code from being
mutation-tested. Details can be found on the pitest website.

Understanding the Pitest Report
Let’s do a sample run and look at the result it generates. To

begin, check out the source code for the Google Truth library,
and run pitest using Maven:

mvn -Ppitest test

It should take about 60 seconds once Maven has inished
downloading the dependencies. After the run, you’ll ind
an HTML report in the target/pitReports directory. For

the Truth project, you’ll ind the report under core/target/
pitReports.

The pitest report looks very similar to the reports that

standard coverage tools produce, but it contains some extra

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://pitest.org/

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

49

//junit 5 /

information. Each package is listed with its overall line cov-

erage and its mutation score shown side by side.
You can drill down into each source ile to get a report

such as the one shown in Figure 1.

Line coverage is shown as blocks of color that span the
width of the page. Green indicates that a line is executed by
tests, and red indicates that it is not.

The number of mutations created on each line is shown
between the line number and the code. If you hover over the
number, you’ll get a description of the mutations that were
created and their status. If all the mutants were killed, the

code is shown in darker green. If one or more of them sur-

vived, the code will be highlighted in red.
There’s additional useful information at the bottom of

the report: a list of all the tests that were used to challenge
the mutants in this ile and how long each of them took to
run. Above this is a list of all the mutations. If you hover over
them, you’ll see the name of the test that killed the mutant.

Google Truth was developed without using pitest or any

other mutation testing tool and, on the whole, the team that

developed it did a very good job. A mutation testing score of
88 percent is not easy to achieve. But still, there are holes.

The most interesting mutants are the ones that appear

on the green lines that indicate they were covered by tests. If
a mutant was not covered by a test, it is not surprising that it
survived and does not give any additional information com-

pared to line coverage. But if a mutant was covered, you have

something to investigate.

Figure 1. A report generated by pitest

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

50

//junit 5 /

For example, take a look at line 73 of PrimitiveIntArray

Subject.java. Pitest created a mutant that has the following
description:

removed call to com/google/common/truth/

PrimitiveIntArraySubject::failWithRawMessage

[This message has been wrapped due to width constraints.
—Ed.] What this tells you is that pitest commented out the
line of code that called this method.

As the name suggests, the purpose of failWithRaw

Message is to throw a RuntimeException. Google Truth is an

assertion library, so one of the core things that it does is
throw an AssertionError when a condition is not met.

Let’s take a look at the tests that cover this class. The fol-

lowing test looks like it is intended to test this functionality.

@Test

public void isNotEqualTo_FailSame() {

 try {

 int[] same = array(2, 3);

 assertThat(same).isNotEqualTo(same);

 } catch (AssertionError e) {

 assertThat(e)

 .hasMessage("<(int[]) [2, 3]>" +

 "unexpectedly equal to [2, 3].");

 }

}

Can you spot the mistake? It is a classic testing bug: the test
checks the content of the assertion message but, if no excep-

tion is thrown, the test passes. Tests following this pattern

normally include a call to fail(). Because the exception the

Truth team expected is itself an AssertionError, the pattern

they followed in other tests is to throw an Error.

@Test

public void isNotEqualTo_FailSame() {

 try {

 int[] same = array(2, 3);

 assertThat(same).isNotEqualTo(same);

 throw new Error("Expected to throw");

 } catch (AssertionError e) {

 assertThat(e)

 .hasMessage("<(int[]) [2, 3]>" +

 "unexpectedly equal to [2, 3].");

 }

}

If this throw is added to the test, the mutant is killed.

What else can pitest ind? There is a similar problem on
line 121 of PrimitiveDoubleArraySubject.java. Again, pitest

has removed a call to failWithRawMessage.

However, if you take a look at the test, it does throw

an Error when no exception is thrown. So what’s going on?
This is an equivalent mutant. Let’s examine this category of

mutants a bit more.

Equivalent Mutants
Equivalent mutants are the other problem identiied by the
academic research that I referred to in the introduction.

Sometimes, if you make a change to some code, you
don’t actually change the behavior at all. The changed code
is logically equivalent to the original code. In such cases, it is

not possible to write a test that will fail for the mutant that
doesn’t also fail for the unmutated code. Unfortunately, it is
impossible to automatically determine whether a surviving
mutant is an equivalent mutant or just lacks an efective test
case. This situation requires a human to examine the code.

And that can take some time.

There is some research that suggests it takes about 15
minutes on average to determine if a mutation is equivalent.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/hcoles/truth/blob/master/core/src/main/java/com/google/common/truth/PrimitiveIntArraySubject.java#L73
http://bit.ly/2dwOLgl

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

51

//junit 5 /

So if you apply mutation testing at the end of a project and
have hundreds of surviving mutants, you might need to

spend days assessing the surviving ones to see whether they

were equivalent.

This was seen as a major problem that must be overcome
before mutation testing could be used in practice. However,
much of the early research into mutation testing had an

unstated built-in assumption. It assumed that mutation test-
ing would be applied at the end of a development process
as some sort of separate QA process. Modern development
doesn’t work like that.

The experience of people

using pitest is that equivalent

mutants are not a major prob-

lem. In fact, they can sometimes

be helpful.
The most efective time to

perform mutation tests on your

code is when you write the code.

If you do this, you will need to

only assess a small number of
surviving mutants at any one time, but, more importantly,
you will be in a position to act on them. Assessing each sur-

viving mutant takes far less than the suggested average

of 15 minutes, because the code and the tests are fresh in
your mind.

When a mutant in code you have just written survives,
this will prompt you to do one of three things.

■■ If the mutant is not equivalent, you will most likely add

a test.
■■ If the mutant is equivalent, you will often delete some code.

One of the most common types of equivalent mutants is a
mutation in code that does not need to be there.

■■ If the code is required, the equivalent mutation might

prompt you to examine what the code is doing and the way

it is implemented.

Line 121 of PrimitiveDoubleArraySubject.java, which you

just examined, is an example of this last category. Let’s take a

look at the full method.

public void isNotEqualTo(Object expectedArray

 , double tolerance) {

 double[] actual = getSubject();

 try {

 double[] expected = (double[]) expectedArray;

 if (actual == expected) {

 // the mutation is to the line below

 failWithRawMessage(

 "%s unexpectedly equal to %s."

 , getDisplaySubject()

 , Doubles.asList(expected));

 }

 if (expected.length != actual.length) {

 return; //Unequal-length arrays are not equal.

 }

 List<Integer> unequalIndices =

 new ArrayList<>();

 for (int i = 0; i < expected.length; i++) {

 if (!MathUtil.equals(actual[i]

 , expected[i]

 , tolerance)) {

 unequalIndices.add(i);

 }

 }

 if (unequalIndices.isEmpty()) {

 failWithRawMessage(

 "%s unexpectedly equal to %s."

 , getDisplaySubject()

 , Doubles.asList(expected));

 }

 } catch (ClassCastException ignored) {

 // Unequal since they are of different types.

The only code you
need to perform
mutation testing on
is code that you’ve just
written or changed.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

52

//junit 5 /

 }

}

Pitest has mutated a method call that is conditionally exe-

cuted after comparing two arrays with the == operator.

If the code does not throw an exception at this point, it

will move on and perform a deep comparison of the arrays. If

they are not equal, the code throws exactly the same excep-

tion as if the == had returned true.

So, this is a mutation in code that exists solely for perfor-
mance reasons. Its purpose is to avoid performing a more

expensive deep comparison. A large number of equivalent
mutants fall into this category; the code is needed but relates
to a concern that is not testable via unit tests.

The irst question this raises is whether the behavior of
this method should be the same when given the same array as
it is when given two diferent arrays with the same contents.

My view is that it should not. If I am using an assertion
library and I tell it that I expect two arrays not to be equal,
and then I pass it the same array twice, I would ind it useful
for the message to tell me this, perhaps by adding “(in fact, it
is the same array)” to the end of the failure message.

But perhaps I am wrong. Maybe the behavior is better the
way it is. If the behavior remains the same, what can be done
to make the equivalent mutation go away?

I don’t like the isNotEqualTo method. It has two respon-

sibilities. It is responsible for comparing arrays for equality
and it is responsible for throwing exceptions when passed
two equal arrays.

What happens if those two concerns are separated into
diferent methods by doing something like this?

 public void isNotEqualTo(Object expectedArray

 , double tolerance) {

 double[] actual = getSubject();

 try {

 double[] expected = (double[]) expectedArray;

 if (areEqual(actual, expected, tolerance)) {

 failWithRawMessage(

 "%s unexpectedly equal to %s."

 , getDisplaySubject()

 , Doubles.asList(expected));

 }

 } catch (ClassCastException ignored) {

 // Unequal since they are of different types.

 }

 }

 private boolean areEqual(double[] actual

 , double[] expected

 , double tolerance) {

 if (actual == expected) return true;

 if (expected.length != actual.length)

 return false;

 return compareArrayContents(actual

 , expected

 , tolerance);

 }

Now, the equivalent mutant goes away. The mutant has

prompted me to refactor the code into something cleaner.

What is more, I can now also use the new areEqual method to

remove duplicate logic elsewhere in this class, thereby reduc-

ing the amount of code.

Unfortunately, not all equivalent mutants can be removed
by re-expressing the code. If I uncomment the section of the
coniguration that enables pitest’s stronger set of mutation
operators and rerun the test, I’ll get a mutant in the new

areEqual method.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

53

//junit 5 /

removed conditional -

replaced equality check with false

Pitest has changed the method to this:

private boolean areEqual(double[] actual

 , double[] expected

 , double tolerance) {

 if (false) return true; // mutated

 if (expected.length != actual.length)

 return false;

 return compareArrayContents(actual

 , expected

 , tolerance);

}

I can’t refactor the equivalent mutant away without losing the

performance optimization.
So not all equivalent mutants are helpful, but they are

less common than the research suggests.

Pitest is designed to make equivalent mutants as unlikely
as possible: using the default set of operators, many teams
never encounter one. How many you see depends on the type

of code you are writing and your coding style.

What About Really Big Projects?
None of the example projects I’ve talked about so far has been
huge. Is it possible to use mutation testing on a really big
project? Yes.

As I have discussed, by far the most efective way to use
mutation testing is to run tests as you are developing code.

When you use it in this way, project size doesn’t matter. For a
project such as Truth, it is simplest to mutate the entire proj-

ect each time, but you don’t need to do this.

The only code you need to perform mutation testing on

is code that you’ve just written or changed. Even if your code-

base contains millions of lines of code, it is unlikely that your
code change will afect more than a handful of classes.

Pitest makes it easy to work in this way by integrating
with version control systems. This functionality is currently

available only when using the Maven plugin.
If you have correctly conigured the standard Maven

version control information in your POM ile, you can ana-
lyze just your locally modiied code using pitest’s scmMutation
Coverage goal.

This goal has been bound to the proile pitest-local in

the Google Truth POM:

mvn -Ppitest-local test

If you haven’t made any changes to the checked-out code,

this goal will run the tests and then stop. If you have made

changes, it will analyze only the changed iles. Make a change
now to try it out.

This approach gives you just the information you need:
Is the code you’re currently working on well tested? Pitest can
also be set up so that a continuous integration (CI) server can
analyze just the last commit.

But what if you want a complete picture of how good the

tests are for a whole project?
Eventually, you will hit a limit for how large a project you

can do mutation testing for unless you are willing to wait for

many hours, but pitest does provide an experimental option
to push that limit further.

Go back to the Google Truth project and run it with the
following:

mvn -DwithHistory -Ppitest test

Nothing will seem very diferent from when you ran it before.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

54

//junit 5 /

If you run that command again, however, it should inish in
just a few seconds.

The withHistory lag tells pitest to store information
about each run and use it to optimize the next run. If, for
example, a class and the tests that cover it have not changed,

there is no need to rerun the analysis on that class. There are

many similar optimizations that can be performed using the
run history.

This functionality is still in the early stages, but if it is
used from the start of a project it should enable an entire
codebase to be analyzed no matter how large it grows.

Conclusion
I hope I’ve convinced you that mutation testing is a powerful

and practical technique. It helps build strong test suites and
helps you to write cleaner code.

But I want to inish with a word of warning. Mutation
testing does not guarantee that you will have good tests. It

can only guarantee that you have strong tests. By strong, I

mean tests that fail when important behavior of the code
changes. But this is only half the picture. It is equally impor-

tant that a test not fail when the behavior is left the same but
details of the implementation are changed. </article>

Henry Coles (@0hjc) is a software engineer based in Edinburgh,

Scotland, where he runs the local JUG. He has been writing soft-

ware professionally for almost 20 years, most of it in Java. Coles

has produced many open source tools including pitest and an open

source book, Java for Small Teams.

Mutation testing on Wikipedia

learn more

//java proposals of interest /

The recently established Java API for JSON Processing
(JSON-P) speciication deines a standard API for parsing
and generating JSON data. This standard was recently
explained with detailed examples in our July/August

issue (page 31). Although there are multiple JSON parser
implementations, the beneit of JSON-P is that it will be
bundled in the upcoming Java EE 8 release; in fact, it will
be the deined standard for JSON parsing.

JSR 367 proposes to standardize a way to convert
JSON into Java objects and vice versa. As proposed,
JSON-B will leverage JSON-P and provide a conversion
layer above it. The inal deinitive version of JSON-B will
also be a part of the Java EE 8 release and, similarly to
JSON-P, will be the deined standard binding layer for
converting Java objects to and from JSON messages.

This JSR proposes a default mapping algorithm for
converting existing Java classes to JSON. Those default
mappings can then be customized through the use of
Java annotations. JSON-B will be useful to other layers,
such as JAX-RS.

Because the JSR is so far along in its inalization
process, a PDF document of the speciication released

earlier this year is available for download. In addition,
an elegant website with information on getting started

and other resources is available. As promised in the
article referenced earlier, Java Magazine will soon

cover this emerging standard. But until then, these JSR
resources should prove useful.

JSR 367: JSON Binding
with JSON-B

FEATURED JAVA SPECIFICATION REQUEST

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.gitbook.com/book/ncrcoe/java-for-small-teams/details
https://en.wikipedia.org/wiki/Mutation_testing
http://bit.ly/2eftMj9
http://download.oracle.com/otndocs/jcp/json_b-1-pr-spec/index.html
http://json-b.net/

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

55

//new to java /

New language features often make existing code patterns

or idioms less popular. For example, the introduction

of the for-each loop in Java 5 replaced many uses of explicit

iterators because it’s less error-prone and more concise. The

introduction of the diamond operator, <>, in Java 7 reduced the

use of explicit generics at instance creation (and slowly pushed

Java programmers toward embracing type inference). In this

article, we examine how lambdas can reduce the code needed

to implement several programming patterns. To follow along,

you’ll need a basic familiarity with lambdas.

A speciic class of patterns is called design patterns. They

are a reusable blueprint, if you will, for a common problem

when designing software. It’s a bit like how construction

engineers have a set of reusable solutions to construct bridges

for speciic scenarios (such as suspension bridge, arch bridge,
and so on). For example, the visitor design pattern is a com-

mon solution for separating an algorithm from a structure

on which it needs to operate. Another pattern, the singleton

pattern, is a common solution to restrict the instantiation of a

class to only one object.

Lambda expressions provide yet another new tool in the

programmer’s toolbox. They can provide alternative solutions

to the problems the design patterns are tackling but often

with less work and in a simpler way. Many existing object-

oriented design patterns can be made redundant or written in

a more concise way using lambda expressions. In this section,

we explore design patterns:
■■ Strategy
■■ Template method
■■ Observer
■■ Factory

We show how lambda expressions can provide an alternative

way to solve the same problem for which each of these design

patterns is intended.

Strategy Pattern
The strategy pattern is a common solution for representing a

family of algorithms and letting you choose among them at

runtime. You can apply this pattern to a multitude of scenar-

ios, such as validating an input with diferent criteria, using
diferent ways of parsing, or formatting an input.

The strategy pattern consists of three parts, as illustrated

in Figure 1.

These parts are:
■■ An interface to represent some algorithm (the interface

Strategy)
■■ One or more concrete implementations of that interface

to represent multiple algorithms (the concrete classes

ConcreteStrategyA and ConcreteStrategyB)
■■ One or more clients that use the strategy objects

RAOUL-GABRIEL URMA,
MARIO FUSCO, AND
ALAN MYCROFT

Implementing Design Patterns
with Lambdas
Astute use of lambdas can greatly reduce the complexity of implementing standard
coding patterns.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://en.wikipedia.org/wiki/Design_Patterns

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

56

//new to java /

Let’s say you’d like to validate whether text input is

properly formatted for diferent criteria (for example, it
consists of only lowercase letters or is numeric). You start

by deining an interface to validate the text (represented as
a String):

public interface ValidationStrategy {

 boolean execute(String s);

}

Second, you deine one or more implementation(s) of
that interface:

public class IsAllLowerCase

 implements ValidationStrategy {

 public boolean execute(String s){

 return s.matches("[a-z]+");

 }

}

public class IsNumeric

 implements ValidationStrategy {

 public boolean execute(String s){

 return s.matches("\\d+");

 }

}

You can then use these diferent validation strategies in
your program:

public class Validator{

 private final ValidationStrategy strategy;

 public Validator(ValidationStrategy v){

 this.strategy = v;

 }

 public boolean validate(String s){

 return strategy.execute(s);

 }

}

Then with this code, the irst example returns false, the

second one true:

Validator v1 =

 new Validator(new IsNumeric());

System.out.println(v1.validate("aaaa"));

Validator v2 =

 new Validator(new IsAllLowerCase());

System.out.println(v2.validate("bbbb"));

You should recognize that ValidationStrategy is a functional

interface. This means that instead of declaring new classes to

implement diferent strategies, you can pass lambda expres-

sions directly, which are more concise:

// with lambdas

Validator v3 =

 new Validator((String s) ->

 s.matches("\\d+"));

System.out.println(v3.validate("aaaa"));

Validator v4 =

 new Validator((String s) ->

Figure 1. The strategy design pattern

Client
Strategy

+ execute ()

ConcreteStrategyB

ConcreteStrategyA

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

57

//new to java /

 s.matches("[a-z]+"));

System.out.println(v4.validate("bbbb"));

As you can see, lambda expressions remove the boilerplate

code inherent in the strategy design pattern. If you think

about it, lambda expressions encapsulate a piece of code (or

strategy), which is what the strategy design pattern was cre-

ated for, so we recommend that you use lambda expressions

instead for similar problems.

Template Method Pattern
The template method design pattern is a common solution

when you need to represent the outline of an algorithm and

have the additional lexibility to change certain parts of it.
In other words, the template method pattern is useful when

you ind yourself in a situation such as “I’d love to use this
algorithm but I need to change a few lines so it does what

I want.”

Let’s look at an example of how this pattern works.

Say you need to write a simple online banking application.

Users typically enter a customer ID, and then the applica-

tion fetches the customer’s details from the bank database

and inally does something to make the customer happy.
Diferent online banking applications for diferent bank-

ing branches may have diferent ways of making a customer
happy (for example, adding a bonus on the account or just

sending less paperwork). You can write the following abstract

class to represent the online banking application:

abstract class OnlineBanking {

 public void processCustomer(int id){

 Customer c = Database.getCustomerWithId(id);

 makeCustomerHappy(c);

 }

 abstract void makeCustomerHappy(Customer c);

}

The processCustomer method provides a sketch for the

online banking algorithm: fetch the customer given his or

her ID and then make the customer happy. Diferent branches
can now provide diferent implementations of the method
makeCustomerHappy by subclassing the OnlineBanking class.

You can tackle the same problem (creating an outline of

an algorithm and letting implementers plug in some parts)

using your favorite lambdas. The diferent components of the
algorithms you want to plug in can be represented by lambda

expressions or method references.

Here, we introduce a second argument to the method

processCustomer of type Consumer<Customer> because it

matches the signature of the method makeCustomerHappy

deined earlier:

public void processCustomer(

 int id, Consumer<Customer> makeCustomerHappy){

 Customer c = Database.getCustomerWithId(id);

 makeCustomerHappy.accept(c);

}

You can now plug in diferent behaviors directly without
subclassing the OnlineBanking class by passing lambda

expressions:

new OnlineBankingLambda().processCustomer(1337,

 (Customer c) -> System.out.println(

 "Hello " + c.getName());

This is another example of how lambda expressions can help

you remove the boilerplate inherent in design patterns!

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

58

//new to java /

Observer Pattern
The observer design pattern is a common solution when

an object (called the subject) needs to automatically notify

a list of other objects (called observers) that some event has

occurred (for example, a state change). You typically come

across this pattern when working with GUI applications. You

register a set of observers on a GUI component such as a

button. If the button is clicked, the observers are notiied
and can execute a speciic action. But the observer pat-
tern isn’t limited to GUIs. For example, the observer design

pattern is also suitable in a situation where several traders

(observers) might wish to react to the change of price of a

stock (subject). Figure 2 illustrates the UML diagram of the

observer pattern.

Let’s write some code to see how the observer pattern

is useful in practice. You’ll design and implement a custom-

ized notiication system for an application like Twitter. The
concept is simple: several newspaper agencies (The New York

Times, The Guardian, and Le Monde) are subscribed to a feed of

news tweets and may want to receive a notiication if a tweet
contains a particular keyword.

First, you need an Observer interface that groups the

diferent observers. It has just one method called notify

that will be called by the subject (Feed) when a new tweet is

available:

interface Observer {

 void notify(String tweet);

}

You can now declare diferent observers (here, the three
newspapers) that produce a diferent action for each diferent
keyword contained in a tweet:

class NYTimes implements Observer{

 public void notify(String tweet) {

 if(tweet != null && tweet.contains("money")){

 System.out.println(

 "Breaking news in NY! " + tweet);

 }

 }

}

class Guardian implements Observer{

 public void notify(String tweet) {

 if(tweet != null && tweet.contains("queen")){

 System.out.println(

 "Yet more news in London... " + tweet);

 }

 }

}

class LeMonde implements Observer{

 public void notify(String tweet) {

 if(tweet != null && tweet.contains("wine")){

 System.out.println(

 "Today cheese, wine, and news! " + tweet);

 }

 }

}

You’re still missing the crucial part: the subject! Let’s deine
an interface for it:

interface Subject{

 void registerObserver(Observer o);

 void notifyObservers(String tweet);

}Figure 2. The observer design pattern

Observer

+ notify()

Subject

+ notifyObserver()

ConcreteObserverB

ConcreteObserverA

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

59

//new to java /

The subject can register a new observer using the register

Observer method and notify his observers of a tweet with the

notifyObservers method. Let’s go ahead and implement the

Feed class:

class Feed implements Subject{

 private final List<Observer> observers =

 new ArrayList<>();

 public void registerObserver(Observer o) {

 this.observers.add(o);

 }

 public void notifyObservers(String tweet) {

 observers.forEach(o -> o.notify(tweet));

 }

}

It’s a pretty straightforward implementation: the feed keeps

an internal list of observers that it can then notify when a

tweet arrives. You can now create a demo application to wire

together the subject and observers:

Feed f = new Feed();

f.registerObserver(new NYTimes());

f.registerObserver(new Guardian());

f.registerObserver(new LeMonde());

f.notifyObservers(

 "The queen said her favourite book " +

 "is Java 8 in Action!");

Unsurprisingly, The Guardian will pick up this tweet!

You might be wondering how lambda expressions are

useful with the observer design pattern. Notice that the

diferent classes implementing the Observer interface are

all providing implementation for a single method: notify.

They’re all just wrapping a piece of behavior to execute when

a tweet arrives. Lambda expressions are designed speciically
to remove that boilerplate. Instead of instantiating three

observer objects explicitly, you can pass a lambda expression

directly to represent the behavior to execute:

f.registerObserver((String tweet) -> {

 if(tweet != null && tweet.contains("money")){

 System.out.println(

 "Breaking news in NY! " + tweet);

 }

});

f.registerObserver((String tweet) -> {

 if(tweet != null && tweet.contains("queen")){

 System.out.println(

 "Yet more news from London... " + tweet);

 }

});

Should you use lambda expressions all the time? The answer

is no. In the example we described, lambda expressions work

great because the behavior to execute is simple, so they’re

helpful to remove boilerplate code. But the observers may be
more complex: they could have state, deine several methods,
and the like. In those situations, you should stick with classes.

Factory Pattern
The factory design pattern lets you create objects without

exposing the instantiation logic to the client. For example, let’s

say you’re working for a bank and it needs a way of creating

diferent inancial products: loans, bonds, stocks, and so on.
Typically you’d create a Factory class with a method

that’s responsible for the creation of diferent objects, as
shown here:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

60

//new to java /

public class ProductFactory {

 public static Product createProduct(String name){

 switch(name){

 case "loan": return new Loan();

 case "stock": return new Stock();

 case "bond": return new Bond();

 default: throw new RuntimeException(

 "No such product " + name);

 }

 }

}

Here, Loan, Stock, and Bond are all subtypes of Product. The

createProduct method could have additional logic to conig-

ure each created product. But the beneit is that you can now
create these objects without exposing the constructor and

the coniguration to the client, which makes the creation of
products simpler for the client:

Product p = ProductFactory.createProduct("loan");

In lambda expressions, you can refer to constructors just like

you refer to methods, by using method references. For exam-

ple, here’s how to refer to the Loan constructor:

Supplier<Product> loanSupplier = Loan::new;

Loan loan = loanSupplier.get();

Using this technique, you could rewrite the previous code by

creating a Map that maps a product name to its constructor:

final static Map<String, Supplier<Product>> map =

 new HashMap<>();

static {

 map.put("loan", Loan::new);

 map.put("stock", Stock::new);

 map.put("bond", Bond::new);

}

You can now use this Map to instantiate diferent products,
just as you did with the factory design pattern:

public static Product createProduct(String name){

 Supplier<Product> p = map.get(name);

 if(p != null) return p.get();

 throw new IllegalArgumentException(

 "No such product " + name);

}

This is quite a neat way to make use of the Java 8 features

to achieve the same intent as the factory pattern. But this
technique doesn’t scale very well if the factory method

createProduct needs to take multiple arguments to pass on

to the product constructors. You’d have to provide a diferent
functional interface than a simple Supplier.

These examples make clear that lambdas can be used

in many situations in which you might not normally think

of applying them. Getting in the habit of using lambdas,

however, will make your code shorter, clearer, and easier

to write. </article>

This article is adapted from an excerpt of the book Java 8 in Action
by Raoul-Gabriel Urma, Mario Fusco, and Alan Mycroft. Used
with permission.

The original “Gang of Four” book on design patterns

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.manning.com/books/java-8-in-action
http://www.informit.com/store/design-patterns-elements-of-reusable-object-oriented-9780201633610

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

61

//community participation /

The Adopt-a-JSR program was designed by Oracle “to

encourage JUG members, individuals, corporations and

other organizations to get involved in Java Speciication
Requests (JSRs).” It lets Java developers be involved in the

development of the Java platform, via the standards body. In

this article, I explain what Adopt-a-JSR is, the goals of the

program, and how you can get involved.

What Is Adopt-a-JSR?
Adopt-a-JSR is focused on getting Java developers involved

with emerging Java standards as early as possible. Individual

developers, Java user groups, and organizations are all eligible

and welcome to join.

The Java standards covered by JSRs determine what goes

into Java SE, Java EE, and Java ME. For example, Project Jigsaw,

which provides a modularization platform for Java SE, is

deined in JSR 376. For Java EE, the Servlet 4.0 speciication
is determined in JSR 369.

Why Participate in Adopt-a-JSR?
The main reason for this program is to ensure that the emerg-

ing standards for the Java ecosystem are technically sound,

relevant, usable, accessible, and free from intellectual property

entanglements. With an estimated 10 million developers using

Java, this kind of attention to emerging standards is important.

This program enhances a Java developer’s technical,

social, and strategic skills and credentials. Many develop-

ers involved in Adopt-a-JSR have gone on to become authors,

speakers, and leaders in various projects and organizations.

Regarding the work itself, Java developers who adopt a

JSR are often involved in activities such as
■■ Requirements gathering
■■ Speciication design
■■ Reference implementation work
■■ Technology compatibility kit work

If you’d like to help Java continue to be the leading language

and platform choice for software engineers, then this is a

great place to start.

Many potential contributors are reluctant to participate

in a JSR because they’re not experts. But JSRs should be seen

more as special interest groups (SIGs) on a particular topic, in

which the members fulill a wide variety of diferent needs.
Many of the tasks listed above require you only to have an

interest in the topic and the willingness to spend some time.

They’re not reserved for domain experts.

Get Started
To get started, join the community at Adopt-a-JSR. There are

links on that portal for signing up for the IRC channel, mail-

ing lists, and so forth. The next step is to pick an active JSR PHOTOGRAPH BY BOB ADLER

Contribute to Java by
Adopting a JSR
How you can build your developer skills by contributing to Java standards

MARTIJN VERBURG

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://www.jcp.org/en/jsr/detail?id=376
https://jcp.org/en/jsr/detail?id=369
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://jcp.org/en/jsr/stage?listBy=active

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

62

//community participation /

that you and your colleagues are

personally interested in and pas-

sionate about. You can then post

your interest to the Adopt-a-JSR

mailing list, where you will get

advice on how to join the oicial
JSR you’re interested in and how

best to contribute.

When you join the oicial
JSR mailing list and project, you

will typically contact the specii-

cation leads and the expert group

and ask them for tasks that need

to be worked on. These could be

something as small as helping out with social media aware-

ness or as involved as writing JUnit tests for the technology

compatibility kit. It will vary depending on what stage the JSR

is in at the time.

Similar to participating in any good open source project,

you should always try to coordinate your eforts with others
in the program who have adopted the JSR as well as the spec-

iication leads and the expert group.
Building an online presence for your work is important as

well. It’s helpful to have a wiki page for your work on the JSR.

(The London JUG’s page is a good example.) Your wiki page

should explain what you’re aiming to do and link to related

material and help for other volunteers. It also helps to spread

visibility within your local JUG or organization through mail-

ing lists and social media.

The Adopt-a-JSR community can help you with this, as

it ofers hosting for wiki pages, a GitHub hosting service for
code work, and more.

Once you are up and running, there are a lot of ongoing

tasks that you can do to make a meaningful contribution.

Here’s a sample list:

■■ Evangelize the JSR through social media, blogging, and

talks
■■ Arrange “hack days” and meetups to work with, or test out,

the JSR
■■ Help triage an issue in the issue trackers and constructively

contribute to discussions on the mailing list
■■ Help build the reference implementation or technical com-

patibility kit.

See the Adopt-a-JSR page for more details on how you can get

involved, including some Keynote and PowerPoint presenta-

tions you can give to your local JUG or organization.

Conclusion
If you’ve wondered how Java SE, Java EE, and Java ME are

deined and wish you were able to help, then Adopt-a-JSR is
the place to start. It’s great for your career and will help mil-

lions of your fellow Java developers around the world. In the

next issue of Java Magazine, I will have a similar article on

contributing to OpenJDK via the Adopt OpenJDK program,

which has a speciic focus on Java SE. </article>

Martijn Verburg is a Java Champion and the cofounder and CEO

of jClarity, a startup focused on the next generation of lightweight,

intelligent performance analysis products. He is a coauthor of The
Well-Grounded Java Developer (Manning, 2012) with Ben Evans,

and is deeply involved in getting Java developers to participate in

the development of the Java ecosystem.

If you’ve wondered how
Java SE, Java EE, and
Java ME are defined
and wish you were
able to help, then
Adopt-a-JSR is the
place to start.

An overview of the JSR universe

A time line showing the status of currently active JSRs

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:adopt-a-jsr%40googlegroups.com?subject=
mailto:adopt-a-jsr%40googlegroups.com?subject=
https://java.net/projects/ljc-london-jug/pages/JSR-310
https://community.oracle.com/community/java/jcp/adopt-a-jsr
https://www.jcp.org/en/jsr/overview
https://trello.com/b/4wuqSln0/jsr-stages

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

63

//cloud /

Many development teams are looking for a development

process that will accelerate delivery of applications

and new features. Some of these teams are adopting an agile

development methodology to help them achieve these goals.

Much has already been written about how to bring agility to

teams, so in this article I focus on using tools that help man-

age and control both code and the development team in the

cloud as an integral part of adopting agility.

As your team moves to agile development, you’ll ind
there is a vast array of tools that help with implementing

agility. These tools include utilities that help manage a team’s

work, including issue trackers, agile management dashboards

and reports, live team activity streams, and wikis. There are

also tools to help manage the code lifecycle through version

management, build servers, continuous integration engines,

and deployment platforms.

One of the challenges for an organization moving into

agile development is the need to get all of these utilities

provisioned and integrated in a way that delivers a cohesive

development and management platform. Add in the cost and

time involved in maintaining the servers and software, and

you have a bottleneck to agile adoption.

Luckily, cloud-based platforms are emerging that help

with these challenges by easily provisioning integrated plat-

forms. In this article, I focus on Oracle Developer Cloud

Service and how it can facilitate adoption of agile develop-

ment while cutting the cost and time associated with setting

and integrating these tools.

Getting Started
Oracle Developer Cloud Service is included in the free trial

and licensed versions of many Oracle cloud platform services

such as Oracle Java Cloud Service (used for deploying Java EE

apps) and Oracle Application Container Cloud (used for run-

ning Java SE loads and Node.JS apps). If you want to follow

along with this article, get a trial of either of those services.

Provisioning a Platform
When you irst log in to Oracle Developer Cloud Service,
you’ll see a list of the projects you have access to as a team

member as well as projects that are marked as public in your

cloud instance.

A project is the base environment for the team. It

includes an issue-tracking system and a wiki, one or more

Git repositories, a peer code-review system, and build and

deployment processes.

To provision a project, click the project creation button

and use the simple three-step wizard, with which you spec-

ify a name for your project, a template, and a wiki markup

choice. The project can be private or public.

SHAY SHMELTZER

Getting Started with Agile Java
Development in the Cloud
Avoid endless setup with Oracle Developer Cloud Service’s integrated Git, build, deploy, code review,
and project management tools.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://cloud.oracle.com/developer_service

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

64

//cloud /

Once you inish with the wizard, Oracle Developer Cloud
Service provisions your environment in about one minute.

This is one of the great things about a cloud environment—

a setup process that used to take days if not weeks and

involved setting up servers, installing software, and hooking

up the various components can make those resources avail-

able almost immediately.

Once your project is provisioned, you’ll have a full envi-

ronment that includes
■■ Git repository
■■ Issue-tracking system
■■ Wiki
■■ Code review system
■■ Continuous integration server and Maven repository
■■ Team activity stream

The next step is to add the rest of the team members to the

project and specify their roles. Members in a team can

include developers, quality assurance (QA), documentation,

and operations people, as well as any stakeholder who is part

of the agile team.

As an administrator, you can also further conigure your
project with speciic values for various lists in the issue-
tracking system and agile plan-

ning steps, as well as creating

and mapping code repositories.

You can also integrate with

external systems via web hooks.

Managing Code
You might want to start by

uploading your current code into

the Git repository. You can use

regular Git command lines or any

IDE with Git integration to con-

nect to the Git repository using

either HTTPS or SSH.

Once your code has been uploaded, you can browse it

from the Code tab in your web browser.

You can now continue using your preferred Git interaction

pattern to manage your code, including creating branches, tag-

ging, and so on. Note that the Code tab also enables you to view

changes in your code in a visual way, comparing revisions.

Conducting Code Reviews
Are you ready to merge changes from one branch into another?

You can submit a merge request and specify individual mem-

bers of your team that should review your code before it gets

into the application.

These members will get an email notifying them of the

review request, and they can use a browser to see the changes

you made and comment on speciic lines of code (see Figure 1).

Your back-and-forth discussion can be tracked online by

other reviewers, too. Once your branch is ready, you can

use the browser merge button to merge your code into your

target branch.

Automating Builds
The Build tab in Oracle Developer Cloud Service lets you

deine various build steps for your project. You can use Gradle,
Maven, or Ant for Java-based builds, and if you are also doing

JavaScript/Node.JS coding, then you can add npm, Gulp,

Grunt, and Bower steps to your build process.

Execution, orchestration, and scheduling of builds are

done with a cloud-optimized version of Hudson. You can

deine builds to run at speciic times, or based on the results
of another build, or even automatically when a change is

committed into a speciic branch of your Git repository.
As part of your build, you can run tests of the back end

(using JUnit), the front end (using Selenium), and the code

quality of your application (using FindBugs).

Oracle Developer Cloud Service integration of popular

build and testing frameworks makes it simple for your devel-

You can use Gradle,
Maven, or Ant for
Java-based builds,
and if you are also doing
JavaScript/Node.JS
coding, then you can
add npm, Gulp, Grunt,
and Bower steps to
your build process.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

65

//cloud /

opment team to adopt it as a platform for managing your

build automation, leveraging the knowledge you already pos-

sess in these frameworks.

Streamline Deployment
The Deploy tab in Oracle Developer Cloud Service completes

the code lifecycle by allowing you to push your code into

the runtime environment. Whether you’re using Oracle Java

Cloud Service (think of it as WebLogic in the cloud) or Oracle

Application Container Cloud (on which you can run your Java

SE apps and servers), you can deine deployment proiles that
will deploy your code into the runtime environment.

You can tie the deployment step to the success of speciic
builds, enabling you to automate the full process from code

check-in through compile, package, and test all the way to

having a running version of the code in minutes.

Deployment can be done to multiple servers so, for

example, you can manage deployment to a development

instance and a QA instance separately from the deployment

to the production instance.

Tracking Your To-Do List
Oracle Developer Cloud Service also provides a platform for

managing your tasks/issues and your teamwork. The Issues

Figure 1. Inline commenting on code changes as part of code review

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

66

//cloud /

tab ofers an easy way for team members to report new issues
such as defects, features, and tasks that need to be addressed.

Issues can be associated with dynamic lists of application

features, releases, sprints, and so forth—all customizable by

the project administrator.

You can create subissues to track more-complex tasks

with various dependencies. Each task can also be associated

with an estimate of time it will take to complete or with an

agile point-ranking score. You can also assign speciic tasks
to speciic team members.

Managing Agile Sprints
Oracle Developer Cloud Service can help you manage your

development sprints. Deine a new sprint and decide which
tasks from your backlog are going to be addressed in the

sprint with a simple drag and drop.

Then you can create boards that will show you live infor-

mation about the status of each task and the load on each

team member as the sprint progresses. Using the Reports tab,

you’ll be able to see your progress trend toward the comple-

tion of the tasks in the current sprints.

And based on your results in previous sprints, the service

will alert you if you’re trying to address too many issues that

require too much time (or have a high agile point count). This

helps prevent you from missing your deadlines.

Team Communication
Team communication is crucial for a successful agile devel-

opment process, and Oracle Developer Cloud Service aims to

help here, too. Wikis allow team members to share knowl-

edge, including design documents, coding practices, specs,

and any other information that can help team members

understand and complete their tasks.

To keep you up to date with what is happening in the

project, the activity stream on the projects home page lists

events as they occur. Whether a new Git branch got a commit,

a build failed, or a new task was updated, the activity stream

allows you to keep current with what’s going on with the rest

of the team.

IDE Integration
So far, I have focused on the web-based interfaces for inter-

acting with Oracle Developer Cloud Service. But given that

developers spend much of their day inside their development

environment, Oracle has added integration features specii-

cally for the service into NetBeans, Eclipse, and JDeveloper.

From all three IDEs, developers are able to browse

Oracle’s cloud services to ind their projects and access their
Git repositories. In addition, developers can see the tasks in

the system, including the speciic tasks that are assigned to
them. They can open the tasks and update them from the IDE

as well.

One beneit of this integration is that code changes that
are being committed to the Git repository can be associated

with speciic tasks that developers are working on, creating
a deeper connection between the issue-tracking system and

the code revision system.

Conclusion
Oracle Developer Cloud Service integrates software utilities

that will help teams manage both their software and their

team assignments. With nothing to install, fast provisioning,

and deep IDE integration, Oracle Developer Cloud Service

removes barriers to adopting agile development, resulting in

faster delivery of better applications. </article>

Shay Shmeltzer (@jdevshay) is the director of product manage-

ment for Oracle Cloud Development Tools and Frameworks.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

67

//ix this /

Once again, I’ve composed more problems that simulate

questions from the 1Z0-809 Programmer II exam, which

is the certiication test for developers who have been certi-
ied at a basic level of Java 8 programming knowledge and
now are looking to demonstrate more-advanced expertise.
[Readers looking for basic instruction should consult the New
to Java column, which appears in every issue. —Ed.] As usual,

these questions can require careful deduction to obtain the

right answer.

Question 1. Given the following code:

ResourceBundle properties = ResourceBundle.getBundle(

 "scratch.ConfigData", Locale.FRANCE); // line n1

System.out.println(

 properties.getString("help")); // line n2

And a directory and text ile scratch/ConfigData.properties

located on the CLASSPATH of the running program, which

contains the following text:

file=File

edit=Edit

help=Help

What is the result? Choose one.
a. help

b. Help

c. Aide

d. An exception at line n1

e. An exception at line n2

Question 2. Given this code:

Collection<String> coll = new ArrayList<>();

coll.add("Fred"); coll.add("Jim"); coll.add("Sheila");

System.out.println("coll is " + coll);

coll.remove(0); // line n1

System.out.println("coll is " + coll);

What is the result? Choose one.
a. coll is [Fred, Jim, Sheila]

coll is [Jim, Sheila]

b. coll is [Fred, Jim, Sheila]

coll is [Fred, Jim, Sheila]

c. Compilation fails at line n1.
d. An exception is thrown at line n1.

Question 3. Given that the current working directory of the
program is empty, and given this code fragment:

Path p = Paths.get("a", "b", "cee"); // line n1

System.out.println(p.endsWith(Paths.get("b", "cee")));

System.out.println(p.endsWith(Paths.get("ee")));

What is the result? Choose one.
a. true

true

SIMON ROBERTS

Quiz Yourself
Would you ever use a finally clause with a try-with-resources? Explore this and
other subtle questions from an author of the Java certification tests.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

68

//ix this /

b. true

false

c. false

true

d. false

false

e. An exception at line n1

Question 4. Given the following code:

class MyResource implements AutoCloseable {

 private String name;

 public MyResource(String name) {

 this.name = name;

 }

 @Override

 public void close() {

 System.out.println(name);

 }

}

public class ResourceHog {

 public static void main(String[] args) {

 try (MyResource one = new MyResource("one");

 MyResource two = new MyResource("two")) {

 } finally {

 System.out.println("three");

 }

 }

}

What is the result? Choose one.
a. one

two

three

b. three

two

one

c. three

one

two

d. two

one

three

e. The words one, two, and three are all output, but the

order is not determined.

Question 5. Given this code:

class MyJobException extends Exception {}

class Job implements Callable<String> {

 public String call() throws MyJobException { // line n1

 return "Done";

 }

}

public class Jobs {

 public static void main(String[] args) {

 ExecutorService es =

 Executors.newFixedThreadPool(3);

 Future<String> handle = es.submit(new Job());

 try {

 String rv = handle.get();

 } // line n2

 catch (InterruptedException ex) {

 ex.printStackTrace();

 } // line n3

 }

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

69

//ix this /

Which is true? Choose one.
a. The code compiles successfully.
b. The code compiles if the throws clause at line n1 is

deleted.
c. The code compiles if catch (Exception e){} is added

immediately after line n2.
d. The code compiles if catch (MyJobException e){} is

added immediately after line n3.
e. The code compiles if catch (Exception e){} is added

immediately after line n3.

Question 1. The correct answer is option B. This question is
really asking what happens when you try to access a resource
bundle for a locale, but there is no ile deining values for that
particular locale.

When you deploy an internationalized application, you
try to provide resource iles for all the locales in which you
expect your software to be used, and perhaps you even ofer
updates at intervals as you ind customers in new locations
that you didn’t originally support. However, if the program
were to throw an exception when it is used in an unexpected

locale, that would be pretty harsh; so it’s a fair guess that
throwing an exception isn’t going to be a good behavior.
Indeed, there’s no checked exception when you try to access
the ile in the irst place (at line n1) or when you look up the
particular value (at line n2). On that basis, both option D and
option E are incorrect.

If no exception is thrown, some text must result. The
three remaining options amount to saying “Java can translate

English to French and come up with Aide,” “Java uses the key
instead of a value if the value isn’t found,” and “Java uses a
less perfectly appropriate resource ile.” The actual truth in
this situation is the third of these: Java uses the best-itting
resource ile it can ind, even if that ile is the default ile.

Here, the only ile that exists is the default resource
ile, but Java takes several tries before settling on this. A
locale is made of several parts. I’ll simplify the discussion
by considering two main parts: the language and the
region. In this case, Locale.FRANCE refers to the French

language as spoken in France, which is coded as fr_FR.
Given this data, the ResourceBundle mechanism tries to

ind these iles in order: ConfigData_fr_FR.properties and

ConfigData_fr.properties.
Notice that the ilenames are constructed from three

parts: the base bundle name (ConfigData, here), then the
locale-derived part, and then the extension (.properties).
Strictly speaking, several more local variations might be
checked with more-speciic information, but the concept
is illustrated well enough here. If the search has still failed
(as it will in this example), the search is repeated using
the system’s default locale (which might or might not be
fr_FR). In this case, you don’t know whether there’s a dif-
ferent default locale, and it doesn’t matter anyway, because
only one ile exists. So the second search fails, too. After
that, the system falls back to searching for the default ile,
ConfigData.properties.

The efect of this is that the search inds the best-
available match. If you had a ile dedicated to French speak-

ers in France, it would be found. If that’s missing, but there’s
a generalized French-language ile, that would be found.
Finally, as is the case with this question, the system falls
back to the nonspeciic version, which, in this case, contains
English. By the way, this nonspeciic version has an oicial
name, which is base bundle.

There is a failure mode that’s broadly consistent with

Answers

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

70

//ix this /

option E if all potential resource iles, including the base
bundle, are missing. In this situation, the getBundle method

throws a MissingResourceException (which is an unchecked
exception, so no code has to admit this possibility). Of course,
that’s not relevant to this question because the base bundle

is found.
By the way, the process is explained in more detail in the

API documentation.
This behavior is really quite useful. If you had a single

French ile, ConfigData_fr.properties, it would probably
serve quite well for any French speakers, whether they were
French or Canadian, or they were from any of nearly 30 coun-

tries in Africa or about a dozen others around the world.
It’s interesting to note, of course, that Java has a non-

trivial multilingual capability. While it generally does not
attempt to translate text between languages, it knows the
names of months and days of the week in many languages, so
date-type objects are converted into locale-appropriate text
without help from the programmer.

Question 2. The correct answer is option B. This is one of
those questions that investigates a situation where misunder-

standing can easily occur—with potentially diicult-to-debug
consequences. This question might be too hard for quizzes,
but it’s a truly enlightening problem, so I’ll share it with
you nonetheless.

So, what’s going on? Because the correct answer is option

B, it appears that the code compiles and runs, but it does not

modify the data in the collection. The behavior hinges on
the method at line n1. If you look at this in an IDE, you’ll see
that the argument to the remove method is an Object, not an

int. The remove(Object) method is deined on Collection,

and it removes an object that matches the argument. But this
collection contains only three strings: "Fred", "Jim", and

"Sheila". Consequently, no change is made to the collection,
and the answer makes sense.

I think that this leaves a couple of curiosities remain-

ing. First, isn’t there a remove(int) method deined for a
List? And, doesn’t that method remove the item at the

given index position? Well, yes, both of those are true state-

ments. However, the relationship between remove(int) and

remove(Object) is one of method overloading, not method

overriding, which means that the compiler decides which

method to invoke, rather than the object that’s the target of
the invocation making the decision at runtime.

In this example, the collection object is actually a List,

but the code refers to it as a Collection, and Collection does

not have the remove(int) method (collections are not intrin-

sically ordered, so positional indexes are not meaningful).
Because of this, the compile-time decision is made to invoke
the remove(Object) method.

As a point of interest, if you simply change the declared
type of the variable coll from Collection to List, "Fred" is

removed from the list and the output does indeed change

from what’s shown for option B to what’s shown for option A.
But at this point, you might reasonably ask why the com-

piler allows the call to remove on a Collection<String> to

accept an Integer argument. Doesn’t the generics mechanism
restrict the argument to a String, and wouldn’t that result

in a compilation failure (option C)? If you check the docu-

mentation for this method, it does not actually take a generic
argument; it takes Object. The same is true of the contains

method, too. In efect, this allows you to say “if the code
contains this item, remove it” while referring to an item that

cannot possibly be present because it’s the wrong type. This
seemingly useless behavior allows for backward compatibility
with code written prior to the advent of generics. Similarly,
you can ask whether a collection of automobiles contains
an apple, and while the question is valid, you just get the
answer “no.”

It’s interesting to note that many IDEs and style guides
(including the CERT Secure Java Coding recommendations)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/8/docs/api/java/util/ResourceBundle.html#getBundle-java.lang.String-java.util.Locale-java.lang.ClassLoader-

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

71

//ix this /

warn against calling these methods with generically inap-

propriate arguments, and you can probably see why now.
Also, the return value of these remove methods can be used

to determine whether any change was made, and style guides
often advise against ignoring such return values.

From one perspective, the diference between inheri-
tance and overloading is simple enough, but sometimes it

takes on a trickier consequence—which makes a great ques-

tion and discussion, partly because you might have a horrible
time trying to debug the code when a manager is yelling at
you to “Fix it now!”

Question 3. The correct answer is option B. The irst observa-

tion is that the Path mechanism has no problem referring

to iles and directories that don’t exist. That’s actually quite
important, because if it were unable to do so, you’d have a
problem trying to create a new ile. On that basis, you should
be ready to eliminate option E, which seems to be hinting
that the reference to the path a/b/cee, which doesn’t exist,

would cause a problem. (Note that the question states that the
current working directory is empty.)

So, the remainder of the question revolves around two

questions. First is whether the Path.endsWith method tra-

verses directories (if it does, you would expect the irst line of
output to be true). Second is whether it examines whole seg-

ment names or is willing to match just the tail end of a seg-

ment name, such as deciding that a/b/cee ends with ee.
It’s a rather boring matter of rote learning that, indeed,

the method does match across directories, but it does not

match partial segment names. Hence, the irst output
line is true, and the second is false—making option B the
correct answer.

Question 4. The correct answer is option D. This question
addresses the behavior of the try-with-resources mecha-

nism and how it interacts with the AutoCloseable resources

that it manages. Two diferent behaviors are addressed: 1) the
timing relationship between the automatic closure and any
explicitly coded finally block, and 2) the timing relationship
among multiple resources all opened in the parameter list of

a single try statement.
Much of the time when you use try-with-resources,

there’s no need for a finally block; the auto-generated code
created by the compiler normally closes anything that needs
to be closed. However, there are some resource-like things
that do not implement AutoCloseable, and those would likely
need a finally block to release them. The examples that
spring to mind for me are the API-level lock utilities that
exist in the java.util.concurrent package. Therefore, it is
possible to have both try-with-resources and a finally block
in well-thought-out code that isn’t simply illustrating an aca-

demic talking point.
Of course, the relationship between any resource being

released in a finally block and the resources being managed
by the try-with-resources mechanism is pretty tenuous. The
lexical scope of the managed resources is necessarily limited
to the try statement and the block that immediately follows
it. Therefore, those resources are generally invisible to the
finally block. In contrast, anything visible in the finally

block must be scoped “outside” of the whole try/catch/

inally construction.
Nevertheless, Java speciies that the finally block

is executed after the management of the AutoCloseable

resources. Java Language Speciication section 14.20.3.2,

“Extended try-with-resources,” states that “all resources will
have been closed (or attempted to be closed) by the time the
finally block is executed.” This rules out option B and option
C, which assert that the word three is printed irst.

Also, section 14.20.3 (the overarching section containing
the subsection mentioned above) notes that variables are
“closed automatically, in the reverse order from which they
were initialized.” Consequently, you can be sure that the two

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html#jls-14.20.3.2
https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html#jls-14.20.3

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

72

//ix this /

resources will be closed such that two is output irst and one

comes after.
Notice that these speciication statements are explicit;

they don’t leave the order of the operations uncertain in any
way. The order has been pinned down as two, one, three, so

the answer is not option E, but rather option D.
If you came across this in an exam, you might consider

that it’s a lot of code to understand for a sub-two-minute

answer. However, notice that the options ofered include only
the ordering of output, so you can safely ignore minor syn-

tactic details. Instead, you need to identify only that the dif-
ference between the various options amounts to “the order of
closing is deined versus undeined” and then decide between
“AutoCloseable irst, and then finally” and its inverse and

between “auto-close in reverse order from opening” and
its inverse.

Question 5. The correct answer is option E. This question
investigates the relationship between the abnormal ter-

mination (otherwise known as “exception behavior”) of a
Callable and the get method of the Future that connects to

that Callable.
The general ExecutorService mechanism allows you

to submit jobs, represented either as Runnable or Callable

objects, to a pool of worker threads. The run method of a

Runnable is declared to return void, and cannot throw any
checked exceptions. In contrast, Callable is a generic inter-

face, and the call method that it deines returns whatever
the generic type might be. Also, call in the base interface is

declared to throw Exception, permitting implementations

to throw any exception they like. This means that option B,
which efectively asserts that the call method may not throw
an exception, is false.

Option C can immediately be rejected based on regu-

lar Java behavior. If a series of catch blocks catch exception
types that are related by class hierarchy, the more-speciic

exception (the subclass) must come irst. If the exceptions
are listed with the more-general class irst, compilation fails
because the more-speciic (later) catch block is unreachable.
Java Language Speciication section 14.21 states this, albeit

with rather abstruse language. In option C, the sugges-

tion is that adding a catch (Exception) block before the
catch (InterruptedException) block would somehow help.
But you can immediately see that this will cause, not cure,
compilation failure.

Next, you must consider whether an additional catch

block is even necessary, or if the right answer might actually
be option A, which asserts that the code is good as it stands. It
turns out that the deinition of the get method of the Future

interface is declared to throw checked exceptions. One, as
the existing code suggests, is an InterruptedException. It’s
a matter of general principle that any API in Java that blocks
the current thread should break out of the blockage and
throw an InterruptedException if the thread receives an

interrupt from the Thread.interrupt() method. This design
allows code a chance to recover from overly long blockage,
or perhaps simply to shut down on request. However, the
get method attempts to get the result of the job’s execution.
Given that the call method of Callable is permitted to throw

an exception, it’s reasonable to infer that the get method

might need to report that exception. Of course, the job itself
might have been shut down, and the get method would need

an abnormal termination mechanism (that is, another excep-

tion) to report that. Because there is more than one pos-

sible abnormal termination situation, get actually wraps
those in an ExecutionException, and if the call method

threw an exception, that exception would be the cause of the

ExecutionException.
Because of this structure, option A is false (there is a

checked exception that must be caught to allow the code to
compile) and option D is also false (the checked exception
thrown by the get method is not the one declared on the call

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html#jls-14.21

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

73

//ix this /

method implementation). Instead, the “ideal” exception to
handle would be ExecutionException, but this isn’t ofered in
the available options. Therefore, option E (catching a simple
Exception, but at a valid place in the source code) has to be
the correct answer.

There is another observation to be made about this ques-

tion. The question’s construction actually gives away more
than a real exam question would typically do. Imagine that
you thought the exception that arose from the get method

would actually be the one that comes directly from the call

method—that is, a MyJobException. That would make both
option D and option E correct. But the question calls for only
one correct answer. This logic is actually suicient for you to
reject option D. Here, it’s a curiosity, but in a real exam ques-

tion, know that unless there’s very speciic wording, you are
picking correct answers rather than the best answers. And on
those very rare occasions where a best answer is called for in
one of the programmer certiication exams, you can expect
very clear wording leading you to understand the criteria that
constitute “best.” </article>

Simon Roberts joined Sun Microsystems in time to teach Sun’s

irst Java classes in the UK. He created the Sun Certiied Java

Programmer and Sun Certiied Java Developer exams. He wrote

several Java certiication guides and is currently a freelance edu-

cator who teaches at many large companies in Silicon Valley and

around the world. He remains involved with Oracle’s Java certiica-

tion projects.

Javadoc for the Collection class in Java 8

Oracle’s tutorial on try-with-resources

learn more

//user groups /

THE ISTANBUL JUG
In Turkey, Java is one of the
most popular programming

languages. Istanbul—the
huge metropolis connect-

ing Asia and Europe—hosts
its own Java user group
(JUG). The Istanbul JUG
was founded in 2010. Four
members set up the leader-

ship board to carry out the
primary purpose of the

group, which is to contribute to the Java community with the
help of talented members. It provides Java news and helps Java
developers by blogging; writing ebooks; and holding webinars,
workshops, and conferences.

To date, the Istanbul JUG has held 43 meetups and events.
The group has also joined the Java Community Process (JCP)
program and takes part in Adopt-a-JSR activities. It also con-

tributes to open source projects such as Mongolastic.
So far, the Istanbul JUG has held four Java conferences:

Java Day Istanbul 2011, Java Day Istanbul 2013, and Voxxed
Days İIstanbul 2015 and 2016. Next year’s planned Java Day
Istanbul 2017, on May 6, is expected to draw 500 attendees.
The August 2016 event hosted a hands-on lab based on Java 9
features such as HTTP/2, JShell, and Project Jigsaw. In total,
92 Java developers attended the workshop. They were given
programming challenges to learn what’s coming in Java 9. As
a result of this workshop, the Istanbul JUG received a long list
of feedback ideas, helpful for preparing future workshops on
JSR 371 (MVC 1.0) and JSR 374 (JSON-P). In October 2016, the
Istanbul JUG will hold a workshop about Kubernetes (K8s).

Contact the Istanbul JUG via email or follow it on Twitter

and Facebook.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
mailto:bilgi%40istanbul-jug.org?subject=
https://twitter.com/istanbuljug
https://www.facebook.com/groups/1521265448134711

ORACLE.COM/JAVAMAGAZINE /////////////////////////////// NOVEMBER/DECEMBER 2016

74

//contact us /

Comments
We welcome your comments, correc-

tions, opinions on topics we’ve covered,

and any other thoughts you feel impor-

tant to share with us or our readers.

Unless you speciically tell us that your

correspondence is private, we reserve

the right to publish it in our Letters to

the Editor section.

Article Proposals
We welcome article proposals on all

topics regarding Java and other JVM

languages, as well as the JVM itself.

We also are interested in proposals for

articles on Java utilities (either open

source or those bundled with the JDK).

Finally, algorithms, unusual but useful

programming techniques, and most other

topics that hard-core Java programmers

would enjoy are of great interest to us,

too. Please contact us with your ideas

at javamag_us@oracle.com and we’ll

give you our thoughts on the topic and

send you our nifty writer guidelines,

which will give you more information

on preparing an article.

Customer Service
If you’re having trouble with your

subscription, please contact the

folks at java@halldata.com (phone

+1.847.763.9635), who will do

whatever they can to help.

Where?
Comments and article proposals should

be sent to our editor, Andrew Binstock,

at javamag_us@oracle.com.

While it will have no inluence on our

decision whether to publish your article

or letter, cookies and edible treats will

be gratefully accepted by our staf at

Java Magazine, Oracle Corporation,

500 Oracle Parkway, MS OPL 3A,

Redwood Shores, CA 94065, USA.

 Subscription application

 Download area for code and

other items

 Java Magazine in Japanese

magazine

By and for the Java community

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
mailto:java%40halldata.com?subject=
mailto:javamag_us%40oracle.com?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
http://bit.ly/2b2tXeb
http://bit.ly/2b2tXeb
http://www.oracle.com/technetwork/jp/articles/java/overview/index.html

	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74
	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

	
	JavaMag_ND16_pg01
	JavaMag_ND16_pg02
	JavaMag_ND16_pg03-04
	JavaND16_Zeroturnaround_R1_pg05
	JavaMag_ND16_pg06
	JavaMag_ND16_pg07-09
	JavaND16_Devoxx_R1_pg10
	JavaMag_ND16_pg11
	JavaND16_JetBrains_pg12
	JavaMag_ND16_pg13
	JavaMag_ND16_pg14-19
	JavaMag_ND16_pg20-24
	JavaMag_ND16_pg25-34
	JavaND16_OraclePress_pg35
	JavaMag_ND16_pg36-42
	JavaMag_ND16_pg55-60
	JavaMag_ND16_pg61-62
	JavaMag_ND16_pg63-66
	JavaMag_ND16_pg67-73
	JavaMag_ND16_pg74

